
FINITE GROUPS AND THEIR REPRESENTATIONS

JOHN PIKE

These notes were written at Bridgewater State University in the Spring of 2023. A solid background in

undergraduate linear algebra and a decent amount of mathematical maturity is assumed. It is also expected

that students have had some prior exposure to group theory, but a self-contained treatment of the necessary

topics therein is provided in Section 1. Much of the material is taken from Advanced Modern Algebra by

Joseph Rotman, Linear Representations of Finite Groups by Jean-Pierre Serre, and Representation Theory

of Finite Groups by Benjamin Steinberg. There are likely typos and other mistakes. All such errors are

mine and corrections are greatly appreciated.
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1 Groups

Before diving into our main topic, we brie�y review some basic group theory in order to �x notation, record

a few useful results, and reacquaint ourselves with the general �avor of the subject.

A group is a set G equipped with a binary operation (a, b) 7→ ab that satis�es

• (ab)c = a(bc) for all a, b, c ∈ G,

• there exists an identity element e such that ea = ae = a for all a ∈ G

• for each a ∈ G, there exists an inverse a−1 ∈ G with aa−1 = a−1a = e

We say that G is abelian if one also has ab = ba for all a, b ∈ G.

Note that the associative law means that the product abc is unambiguously de�ned, and thus, by induction,

so is a1 · · · an for any a1, . . . , an ∈ G.

Also, the group identity is unique since fa = af = a for all a ∈ G implies e = ef = f .

Similarly, if ab = ba = e, then b = be = b(aa−1) = (ba)a−1 = ea−1 = a−1, so inverses are unique as well.

Moreover, since a−1a = aa−1 = e, we see that (a−1)−1 = a. Since (b−1a−1)(ab) = b−1(a−1a)b = b−1b = e

and (ab)(b−1a−1) = a(bb−1)a−1 = aea−1 = aa−1 = e, we have (ab)−1 = b−1a−1.

Note too that if ab = ac, left-multiplying both sides by a−1 shows that b = c, and if ba = ca, right-multiplying

both sides by a−1 shows that b = c.

An immediate consequence is that if ab = e or ba = e, then b = a−1; one only needs to verify that a purported

inverse is a one-sided inverse (provided that the group structure has already been established).

Likewise, if ab = a for some a ∈ G, then b = a−1ab = a−1a = e; it is enough to check that a purported

identity behaves appropriately at a single element.

We will use exponential notation to denote repeated multiplication so that for all a ∈ G, n ∈ N, a0 = e and

an = aan−1. This extends to negative exponents by writing a−n = (a−1)n. With this convention, we have

ai+j = aiaj and (ai)j = aij for all a ∈ G, i, j ∈ Z.

If G has order |G| = n, then the pigeonhole principle shows that the n+1 elements a0, a1, . . . , an cannot all

be distinct, so there must be some 0 ≤ i < j ≤ n with ai = aj and thus aj−i = e. In other words, for each

a ∈ G, there is some 1 ≤ k ≤ n such that ak = e. The smallest such k is called the order of a, denoted o(a).

Observe that if aℓ = e for some ℓ > 0, then we must have o(a)
∣∣ ℓ since ℓ = m · o(a) + r with m ≥ 0 and

0 < r < o(a) implies ar = (ao(a))mar = aℓ = e, contradicting the minimality of o(a).

Example 1.1. For n ∈ N, the set [n]0 := {0, 1, 2, . . . , n−1} endowed with the operation of addition modulo

n is called the cyclic group of order n, written Z/nZ. The identity element is 0 and the inverse of j is n− j.

The cyclic group of order 10 is Z/10Z = {0, 1, 2, ...9} with 1 + 2 = 3, 5 + 5 = 0, and 6 + 8 = 4, for example.

Example 1.2. The set [n]0 does not form a group under multiplication because the multiplicative identity

is 1, and there is no j with the property that j · 0 = 1.

However, Un =
{
j ∈ [n]0 : ij ≡ 1 (modn) for some i ∈ [n]0

}
does form a group under multiplication. The

identity is 1, each element has an inverse by construction, and associativity is inherited from Z. Multiplicative

closure follows by observing that if j, k ∈ Un, then there exist j−1, k−1 ∈ Un ⊆ [n0] which necessarily satisfy

k−1j−1 ∈ [n0] and (k−1j−1)(jk) = 1.
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If (i, j) = d is the largest positive integer that divides both i and j, then Bézout's lemma equivalently

characterizes d as the smallest positive integer that can be expressed as αi + βj for some α, β ∈ Z. When

d = 1, we say that i and j are relatively prime. Thus if j and n are relatively prime, then there exist integers

α, β with αj + βn = 1 and thus αj ≡ 1 (modn). Taking i ∈ [n0] to be the congruence class representative

of α certi�es that j ∈ Un. Conversely, if (j, n) > 1, then there can be no i ∈ [n0] with ij ≡ 1 (modn) as this

would imply ij + βn = 1 for some β ∈ Z.

When p is prime, we have Up = [p− 1] where we are using the notation [n] := {1, 2, . . . , n}.

The group of units for n = 10 is U10 = {1, 3, 7, 9} with 3 · 3 = 9, 7 · 9 = 3, and 9 · 9 = 1, for example.

Example 1.3. Another abelian group is the Klein four-group, consisting of the symbols e, a, b, c with group

law encoded in the Cayley table

∗ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

Thus every element is its own inverse and the product of any two non-identity elements is the third.

One way to realize this group is to take e = (0, 0), a = (0, 1), b = (1, 0), and c = (1, 1) where the

product of two elements is their coordinatewise sum modulo 2�e.g. ab = (0, 1) + (1, 0) = (1, 1) = c

and ac = (0, 1) + (1, 1) = (1, 0) = b.

Another is to set e =

[
1 0

0 1

]
, a =

[
1 0

0 −1

]
, b =

[
−1 0

0 1

]
, c =

[
−1 0

0 −1

]
, and compute products by

ordinary matrix multiplication.

For instance, we �nd that bc =

[
−1 0

0 1

][
−1 0

0 −1

]
=

[
1 0

0 −1

]
= a and a2 =

[
1 0

0 −1

]2
=

[
1 0

0 1

]
= e.

Example 1.4. A standard nonabelian example is the dihedral group of order 2n, which has presentation

Dn =
〈
r, s | rn = s2 = (sr)2 = e

〉
. This says that Dn is generated by the symbols r and s subject to the

relations rn = s2 = (sr)2 = e.

A consequence is that rks = sr−k for all k ∈ N since (sr)(sr) = e = s2 implies rs = s2(rs)(rr−1) =

s(sr)(sr)r−1 = sr−1, and if rks = sr−k, then rk+1s = r(rks) = r(sr−k) = (rs)r−k = (sr−1)r−k = sr−(k+1).

This shows that rks is self-inverse since (rks)(rks) = (rks)(sr−k) = rks2r−k = rkr−k = e.

The elements ofDn are thus of the form rk or rks, k = 0, 1, . . . , n−1, with multiplication given by rirj = ri+j ,

ri(rjs) = ri+js, rj(sri) = sr−jri = srj−i = ri−js, and (ris)(rjs) = sr−irjs = srj−is = ri−js2 = ri−j ; the

addition in the exponents is performed modulo n.

We think of Dn as encoding the symmetries of a regular n-gon under rotation and re�ection: rk rotates the

�gure by 2πk/n radians, and s re�ects it about a �xed line of symmetry. There are n lines of symmetry in

total and rks corresponds to a re�ection about the (n − k)th from that described by s. (When n is odd,

these lines of symmetry run from a vertex to the midpoint of its opposing side. When n is even, there are

n/2 connecting opposing vertices and n/2 connecting opposing edges.)
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Example 1.5. Perhaps the most important �nite group is Sn, the symmetric group on n symbols, which

consists of all bijections from [n] to itself with function composition as the group law. The order of Sn is

n! since a bijection σ : [n] → [n] is determined by specifying one of the n possibilities for σ(1), one of the

remaining n− 1 for σ(2), and so forth.

We can envision a permutation σ ∈ Sn using the two-line notation σ =

(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
.

This lets us think of the product στ as having the number below j that which appears below τ(j) in σ.

For instance, if σ =

(
1 2 3 4 5

4 2 1 5 3

)
and τ =

(
1 2 3 4 5

5 3 1 2 4

)
, then στ =

(
1 2 3 4 5

3 1 4 2 5

)
.

Indeed, τ sends 1 to τ(1) = 5 and σ sends 5 to σ(5) = 3, so στ sends 1 to σ
(
τ(1)

)
= σ(5) = 3, and so on.

Of course, the top row is always �xed, so a more succinct description is given by the one-line notation which

just records the second row: σ = σ(1)σ(2) · · · σ(n).

This lets us think of permutations in terms of arrangements of a deck of cards labeled 1, . . . , n. Namely, σ

is the arrangement with the card labeled σ(k) in the kth position from the top (and thus the card labeled ℓ

in position σ−1(ℓ)).

A more dynamical picture is that, starting with the ordered deck e = 12 · · · n, σ moves the card that was in

position σ(k) into position k to obtain the arrangement σ = σ(1) · · · σ(n). The product στ then corresponds

to the arrangement obtained by `shu�ing' the deck ordered according to σ in the manner speci�ed by τ .

The card in position k in the arrangement στ is labeled σ
(
τ(k)

)
since τ moves the card that was in position

τ(k)�the one labeled σ
(
τ(k)

)
�into position k. So τ -shu�ing the σ-arrangement 4 2 1 5 3 takes the card in

position τ(1) = 5 (labeled σ(5) = 3) and moves it to position 1, then takes the card in position τ(2) = 3

(labeled σ(3) = 1) and moves it to position 2, etc., resulting in the στ -arrangement 3 1 4 2 5.

In many instances, yet another description is to be preferred, the cycle notation. If i1, . . . , ir are distinct

elements of [n] and π ∈ Sn satis�es π(i1) = i2, π(i2) = i3, . . . , π(ir−1) = ir, π(ir) = i1, and π(j) = j for

j /∈ {i1, . . . , ir}, then we say that π = (i1 i2 . . . ir) is an r-cycle. For instance, the permutation τ above is the

5-cycle τ = (15423).

Any permutation can be factored as a product of disjoint cycles by starting with 1 and then hopping from

image to image before returning and starting the process anew with the smallest element not yet visited.

By way of example, σ sends 1 to 4 to 5 to 3 to 1 and sends 2 to itself, so that σ = (1453)(2). Likewise, the

permutation π = 42 5 1 3 factors as (14)(2)(35). In both cases, 2 is a �xed point, and we often suppress such

1-cycles, writing σ = (1453) and π = (14)(35), say, though the identity is sometimes denoted (1).

Observe that if α = (i1 . . . ir) and β = (j1 . . . js) with {i1, . . . , ir} ∩ {j1, . . . , js} = ∅, then αβ = βα.

Indeed, if k /∈ {i1, . . . , ir, j1, . . . , js}, then α
(
β(k)

)
= α(k) = k = β(k) = β

(
α(k)

)
. Otherwise, we have

α
(
β(ik)

)
= α(ik) = ik+1 = β(ik+1) = β

(
α(ik)

)
or α

(
β(jℓ)

)
= α(jℓ+1) = jℓ+1 = β(jℓ) = β

(
α(jℓ)

)
with

the subscript addition performed modulo r and s, respectively. This shows that rearranging the cycles in a

complete factorization has no e�ect, and of course, neither does cyclically shifting the terms within a cycle.

Modulo these operations, complete factorizations are unique because if α1 · · ·αs = σ = β1 · · ·βt are decom-

positions of σ into disjoint cycles, then for any k ∈ [n] with σ(k) ̸= k, there is exactly one αi and one

βj which do not �x k. By relabeling the cycles if need be (which is legitimate since they commute), we

can assume that i = s and j = t. It follows that αm
s (k) = σm(k) = βm

t (k) for all m, hence αs = βt, so

α1 · · ·αs−1 = σ = β1 · · ·βt−1. Continuing thusly establishes the assertion.
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A nice thing about factoring permutations into disjoint cycles is that inverses are particularly easy to com-

pute. Namely, (i1 i2 . . . ir)
−1 = (ir ir−1 . . . i1). Since disjoint cycles commute, the inverse of a product of

disjoint cycles is the product of their inverses. For instance, [(145)(2736))]−1 = (541)(6372) = (154)(2637).

(Another method of computing inverses is to swap the rows in the two-line notation and then sort the

columns so the entries in the �rst row are increasing.)

We can also factor permutations into cycles that are not disjoint. In particular, α = (i1 . . . ir) factors as

α = βr · · ·β2 with βk = (i1 ik). Indeed, if βk · · ·β2 = (i1 . . . ik), then [βk+1(βk · · ·β2)](ik) = βk+1(i1) = ik+1,

[βk+1(βk · · ·β2)](ik+1) = βk+1(ik+1) = i1, and [βk+1(βk · · ·β2)](j) = [βk · · ·β2](j) for j ̸= ik, ik+1. Since

permutations are products of disjoint cycles, we see that every permutation can be written as a product of

2-cycles, or transpositions.

In contrast with complete factorizations, the order generally does matter in a transposition decomposition.

For example, (12)(23) = (123) ̸= (321) = (23)(12). Also, such decompositions are not unique: In S4 we can

write (123) = (12)(23) = (23)(13) = (13)(24)(12)(14) = ... However, the number of factors in a transposition

decomposition of a given permutation always has the same parity.

One way to see this is to de�ne an inversion of π as a pair (i, j) with i < j and π(i) > π(j). Let N(π) be the

number of inversions of π and de�ne sgn(π) = (−1)N(π). If τ = (k ℓ) with k < ℓ, then sgn(τπ) = −sgn(π)
because τπ is obtained from π by swapping k and ℓ in the one-line notation, so every pair (i, j) with

i, j /∈ {k, ℓ} has the same inversion status as before; if i < k < ℓ < j, then (i, k), (i, ℓ), (k, j), (ℓ, j) do as well;

if k < i < ℓ, then (k, i) and (i, ℓ) both switch their inversion status for a net change of (−1)2; and (k, ℓ) has

opposite inversion status, contributing the claimed factor of −1. As N(e) = 0, we see that sgn(π) = 1 if and

only if π can be expressed as the product of an even number of transpositions.

In light of the foregoing, we say that π is even if sgn(π) = 1 and odd if sgn(π) = −1. If σ can be written as

a product of r transpositions and π can be written as a product of s transpositions, then σπ can be written

as a product of r + s transpositions and thus sgn(σπ) = (−1)r+s = (−1)r(−1)s = sgn(σ)sgn(π).

Since (i1 . . . ir) = βr · · ·β2 with βk = (i1 ik), we see that every r-cycle contributes a factor of (−1)r−1, so we

can write sgn(π) = (−1)E(π) with E(π) the number of even length cycles in the complete factorization of π.

Example 1.6. Though our focus here is primarily on �nite groups, there is a class of in�nite groups that

will be crucial to our study of representation theory: The general linear group associated with a vector space

V , denoted GL(V ), consists of all bijective linear transformations from V to itself, and the group law is

composition of mappings.

We will primarily be concerned with �nite-dimensional vector spaces over C, and if V is a complex vector

space with basis {b1, . . . ,bn}, we can identify it with Cn via the map (α1b1 + · · ·+ αnbn) 7→

[ α1

...
αn

]
.

Under this identi�cation, GL(V ) ∼= GLn(C) is the set of invertible n × n complex matrices under ordinary

matrix multiplication.

(If T : V → V is linear, then T (α1b1+· · ·+αnbn) = α1T (b1)+· · ·+αnT (bn) =
[
T (b1) · · · T (bn)

]
α1

...

αn

.)
Since a square matrix is invertible if and only if it has a nonzero determinant and det(AB) = det(A) det(B),

this does indeed de�ne a group. Of course, matrix multiplication is not commutative in general, so GL(V )

is nonabelian when dim(V ) > 1.
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If ∅ ̸= H ⊆ G satis�es the group axioms under the inherited operation, we say that H is a subgroup of G,

written H ≤ G.

To check that H ≤ G, it su�ces to show that if a, b ∈ H, then ab−1 ∈ H.

Indeed, given a ∈ H, taking b = a shows that e = aa−1 ∈ H; taking a = e, b = a shows that a−1 ∈ H; and

for any c ∈ H, taking b = c−1 shows that ac ∈ H.

If H is �nite, it's enough to check that ab ∈ H for all a, b ∈ H since closure ensures that b−1 = bo(b)−1 ∈ H.

Note that we always have the trivial subgroups {e} and G itself.

Given a subset S ⊆ G, we write ⟨S⟩ for the smallest subgroup of G which contains S. (By de�nition, the

intersection of subgroups of G is itself a subgroup, so one can unambiguously de�ne ⟨S⟩ to be the intersection
of all subgroups containing S.)

Example 1.7. An important example is the subgroup generated by a single element g ∈ G, de�ned by

⟨g⟩ = {g, g2, · · · , gm} with m = o(g). Note that gigj = gk where i + j = k in Z/mZ. As such, we say that

⟨g⟩ is a cyclic subgroup of order m.

Observe that if (r,m) = d, then o(gr) = m/d since gro(g
r) = (gr)o(g

r) = e implies m | ro(gr) and thus

m/d | o(gr), and (gr)m/d = (gm)r/d = e implies o(gr) |m/d. The group ⟨g⟩ is thus generated by any element

of the form gt with (m, t) = 1.

Example 1.8. Recall that permutations in Sn can be classi�ed according to their parity. If we set An =

{σ ∈ Sn : sgn(σ) = 1}, then the fact that sgn(σπ) = sgn(σ)sgn(π) shows that sgn(σ)sgn(σ−1) = sgn(e) = 1,

hence sgn(σ−1) = sgn(σ). Accordingly, if σ, τ ∈ An, then sgn(στ−1) = sgn(σ)sgn(τ) = 1, hence στ−1 ∈ An

and we conclude that An ≤ Sn. (We call An the alternating group.)

Example 1.9. Subgroups of GLn(C) include the unitary group Un(C) =
{
A ∈ GLn(C) : A∗A = I

}
, the

special linear group SLn(C) =
{
A ∈ GLn(C) : det(A) = 1

}
, and the group of upper-triangular matrices

Tn(C) =
{
A ∈ GLn(C) : Aij = 0 for i > j

}
.

Indeed, if A,B ∈ Un(C), then (AB−1)∗(AB−1) = (BA∗)(AB∗) = I. That SLn(C) ≤ GLn(C) follows from
det(AB) = det(A) det(B), and it is straightforward to check that products and inverses of upper-triangular

matrices with nonzero diagonal terms are upper-triangular and invertible.

When n = 1, we often write C∗ = GL1(C) for the group of nonzero complex numbers under multiplication

and T = U1(C) =
{
eiθ : θ ∈ [0, 2π)

}
for the `circle group' of complex numbers with unit modulus.

One can also consider matrix groups over sub�elds of C. For instance, SLn(R) is the group of linear

transformations from Rn to itself that preserve volume and orientation.

Given a subgroup H ≤ G and an element a ∈ G, we de�ne the left coset aH = {ah : h ∈ H} and the right

coset Ha = {ha : h ∈ H}. The following example shows that left and right cosets do not necessarily agree.

Example 1.10. In S3, the subgroup H = ⟨(12)⟩ has 3 left cosets:

H = {(1), (12)} = (12)H,

(13)H = {(13), (123)} = (123)H,

(23)H = {(23), (132)} = (132)H.
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The right cosets are

H = {(1), (12)} = (12)H,

H(13) = {(13), (132)} = H(132),

H(23) = {(23), (123)} = H(123).

A fundamental observation about cosets is that they partition the ambient group into equally sized parts.

To see this, note that a ∼ b if a−1b ∈ H is an equivalence relation since a−1a = e ∈ H, a−1b ∈ H implies

b−1a = (a−1b)−1 ∈ H, and a−1b ∈ H, b−1c ∈ H implies a−1c = (a−1b)(b−1c) ∈ H.

The equivalence classes are the left cosets of H since a−1b ∈ H i� b ∈ aH, and they all have the same size

because the map h 7→ ah is a bijection from H to aH.

Clearly g ∈ gH for all g ∈ G and gH = H if and only if g ∈ H. (Right coset analogues of all these results

hold by parallel arguments, but unless otherwise speci�ed, �coset� means �left coset� henceforth.)

If G is �nite and the distinct cosets of H are a1H, . . . , atH (in which case we say that the set {a1, . . . , at}
forms a transversal of H in G), then the preceding shows that |G| = |a1H|+ · · ·+ |atH| = t |H|.

The number t of distinct left cosets of H is called the index of H in G, denoted [G : H] = |G| / |H| .

(The index is de�ned for in�nite groups as well. For instance, the additive groups 2Z ≤ Z ≤ R have

[Z : 2Z] = 2 and [R : Z] = ∞.)

An upshot of this observation is Lagrange's theorem that the order of any subgroup must divide the order

of the group. Specializing to the subgroup ⟨g⟩ shows that o(g)
∣∣ |G| for all g ∈ G.

Theorem 1.2 shows that the converse of Lagrange's theorem holds for abelian groups, and Example 1.25

shows that it does not hold in general.

Example 1.11. If |G| = p with p prime, then the only possible orders of subgroups of G are 1 and p. Thus

for any g ∈ G \ {e}, ⟨g⟩ = G, hence G is cyclic.

Another useful way to partition a group is conjugacy: For any group G and any g ∈ G, the map a 7→ gag−1

is called conjugation by g. This de�nes an equivalence relation on G via h ∼ k if h = gkg−1 for some g ∈ G.

Indeed, x = exe−1; if x = gyg−1, then y = g−1xg; and if x = gyg−1, y = hzh−1, then x = (gh)z(gh)−1.

We write cl(g) for the conjugacy class containing g.

Example 1.12. The cycle type of a permutation π ∈ Sn is (λ1, . . . , λk) if its complete factorization into cycles

of nonincreasing length consists of a λ1-cycle, followed by a λ2-cycle, etc. For instance, (15)(28)(3496) ∈ S9

has cycle type (4, 2, 2, 1). Equivalently, we can de�ne the cycle type of π as [1ϵ12ϵ2 · · ·nϵn ] where ϵk is the

number of k-cycles. For the sake of conciseness, we generally drop terms of the form kϵk whenever ϵk = 0,

so that (15)(28)(3496) has cycle type [112241].

Now suppose β = (i1 . . . im) is an m-cycle in Sn ∋ σ. If σ−1(j) = ir, then (σβσ−1)(j) = σ
(
β(ir)

)
= σ(ir+1),

and if σ−1(j) = k /∈ {i1, . . . , im}, then (σβσ−1)(j) = σ
(
β(k)

)
= σ(k) = j. It follows that σβσ−1 maps σ(ir)

to σ(ir+1) for r = 1, . . . ,m and �xes all other elements of [n], hence σ(i1 · · · im)σ−1 =
(
σ(i1) . . . σ(im)

)
.

As any π ∈ Sn can be completely factored as a product of disjoint cycles, π = β1β2 · · ·βk has the same cycle

type as σπσ−1 = σβ1σ
−1σβ2σ

−1 · · ·σβkσ−1.
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Conversely, suppose that π and γ both have cycle type (λ1, . . . , λk), and let π̂ and γ̂ be the permutations

whose one-line notations are given by dropping the parentheses in the complete factorizations of π and γ

into cycles of nonincreasing length. (To avoid ambiguity in this de�nition, one could adopt the convention

that cycles begin with their least element and cycles of equal length are ordered lexicographically.) Then

the preceding analysis shows that γ = σπσ−1 with σ = γ̂π̂−1.

The conjugacy classes of Sn thus consist of all elements having the same cycle type, so the number of

conjugacy classes is the number of partitions of n. The size of the conjugacy class consisting of all elements

of cycle type [1ϵ12ϵ2 · · ·nϵn ] is
n!∏n

k=1 ϵk !k
ϵk
.

(There are n! ways to order the numbers in [n] and the cycle type determines placement of parentheses. But

this overcounts since there are ϵk! ways to permute the k-cycles amongst themselves and k ways to cyclically

shift the terms within each of the ϵk k-cycles.)

Suppose that G is a group with multiplication denoted by · and K is a group with multiplication denoted

by ∗. If φ : G → K has the property that for all g, h ∈ G, φ(g · h) = φ(g) ∗ φ(h), then we say that φ is a

homomorphism.

Writing eG and eK for the identity elements in G and K, we have that φ(eG) = φ(eG · eG) = φ(eG) ∗φ(eG),
hence φ(eG) = eK . Also, for any g ∈ G, eK = φ(eG) = φ(g · g−1) = φ(g) ∗ φ(g−1) thus φ(g−1) = φ(g)−1,

the inverse of φ(g) in K. By induction, we see that φ(gn) = φ(g)n for all n ∈ Z.

If φ is also bijective, then it is called an isomorphism, and we say that G and K are isomorphic, written

G ∼= K. Isomorphic groups may di�er as sets and in terms of other structural properties like ordering or

topology, but from a group theoretic perspective, they are the same.

For instance, if φ : G → K is an isomorphism and H ≤ G, then for all k1, k2 ∈ φ(H), there are h1, h2 ∈ H

with φ(hi) = ki, so k1k
−1
2 = φ(k1)φ(k2)

−1 = φ(h1h
−1
2 ) ∈ φ(H). That is, isomorphisms map subgroups to

subgroups, necessarily of the same size.

Similarly, suppose that G is abelian and let x, y ∈ K. If φ : G → K is an isomorphism, then there exist

g, h ∈ G with φ(g) = x and φ(h) = y, hence xy = φ(g)φ(h) = φ(gh) = φ(hg) = φ(h)φ(g) = yx, so K is

abelian as well. (We generally don't bother emphasizing the di�erent group operations, identities, etc. when

it is clear from context.)

Example 1.13. If g ∈ G has o(g) = m, then the map φ : Z/mZ → ⟨g⟩ de�ned by φ(j) = gj is an

isomorphism; the latter group is the former in disguise. Similarly, x 7→ e2πix shows that [0, 1) ∼= T.

If φ : G→ K is a homomorphism, then it is routine to show that the kernel ker(φ) =
{
g ∈ G : φ(g) = e

}
is

a subgroup of G and the image Im(φ) =
{
k ∈ K : k = φ(g) for some g ∈ G

}
is a subgroup of K.

Note that φ is injective if and only if ker(φ) = {e} since φ(g) = φ(h) if and only if e = φ(gh−1).

By de�nition, surjectivity of φ is equivalent to Im(φ) = K.

Example 1.14. Example 1.8 shows that sgn is a homomorphism from Sn to C∗. The image is U1(R) and
the kernel is An. Likewise, det de�nes a surjective homomorphism from GLn(C) to C∗ with kernel SLn(C).
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Observe that if φ : G → K is a homomorphism, g ∈ G, and h ∈ ker(φ), then φ(ghg−1) = φ(g)eφ(g)−1 = e,

so ghg−1 ∈ ker(φ) as well.

We say a subgroup N ≤ G is normal (written N ◁ G) if it is closed under conjugation by any element of G.

The preceding observation shows that kernels of homomorphisms are always normal subgroups.

Clearly all subgroups of abelian groups are normal as well, but Example 1.10 demonstrates that not all

subgroups are normal. Indeed, if N ◁ G and h ∈ gN , then there is some y ∈ N with h = gy = gyg−1g = zg

where z = gyg−1 ∈ N . This shows that gN ⊆ Ng, and since both have cardinality |N |, they must be equal.

Conversely, if gN = Ng for all g ∈ G, then for any n ∈ N , g ∈ G, gn = n′g for some n′ ∈ G, hence

gng−1 = n′ ∈ N . Thus an equivalent characterization of normality is that gN = Ng for all g ∈ G.

Example 1.15. If H ≤ G has [G : H] = 2, then G = H
⊔
aH for any a /∈ H. Thus for any h ∈ H, g ∈ G,

either g ∈ H, hence ghg−1 ∈ H, or g = ak for some k ∈ H, hence ghg−1 = (ak)h(ak)−1 = ah′a−1 for

h′ = khk−1 ∈ H. It follows that ghg−1 ∈ H in this case as well since the alternative implies ah′a−1 = ax

for some x ∈ H, giving the contradiction that a = x−1h′ ∈ H. Thus we see that index 2 subgroups are

necessarily normal. As a concrete example, An ◁ Sn since it has two cosets, the even an odd permutations.

(This also follows from the fact that An = ker(sgn).)

Example 1.16. If K ≤ H ≤ G and K ◁ G, then K ◁ H since gKg−1 = K for all g ∈ G and thus for all

g ∈ H. However, we may have that K ◁ H and H ◁ G without K being normal in H.

For instance, in A4, the subgroup V = {(1), (12)(34), (13)(24), (14)(23)}, which is readily seen to be isomor-

phic to the Klein four-group, is normal since conjugation preserves cycle structure. Also,W = {(1), (12)(34)}
is normal in V because it has index 2. However, W is not normal in A4 since, for example, (123)W (123)−1 =

{(1), (14)(23)} ≠W .

If H happens to be a cyclic normal subgroup of G, then every subgroup K ≤ H is also normal in G. To see

this, note that our assumptions imply that there is an h ∈ G such that H = ⟨h⟩ and K =
〈
hk
〉
where k is

the smallest positive integer with hk ∈ K. Normality of H shows that for any g ∈ G, hj ∈ H, ghjg−1 = hm

for some m ∈ N0. Thus for any h
jk ∈ K, ghjkg−1 = (ghjg−1)k = hmk ∈ K.

To further explore the notion of normality, de�ne a product on the collection of nonempty subsets of G by

AB = {ab : a ∈ A, b ∈ B}. (When A = {a} and B ≤ G, AB = aB is the left coset of B containing a.)

This operation is associative by de�nition of multiplication in G, and it satis�es HH = H for all H ≤ G.

If H,K ≤ G, we might hope that HK ≤ G as well, but this turns out to be overly optimistic in general.

For instance, in S3, if H = ⟨(12)⟩ and K = ⟨(23)⟩, then HK = {(1), (12), (23), (123)}, which cannot be a

subgroup since 4 ∤ 6.

However, if subgroups satisfy HK = KH, then for all h1, h2 ∈ H, k1, k2 ∈ K, we have in obvious notation

(h1k1)(h2k2)
−1 = h1k1k

−1
2 h−12 = h1k3h

−1
2 = h1h3k4 = h4k4 ∈ HK, so HK = KH is a subgroup of G.

In particular, if H,K ≤ G with K ◁ G, then for any h ∈ H, k ∈ K, k′ = hkh−1, k′′ = h−1kh ∈ K, thus

hk = hkh−1h = k′h and kh = hh−1kh = hk′′. This shows that HK ⊆ KH and KH ⊆ HK, hence HK ≤ G

by the previous observation.

If H ◁ G too, then for any g ∈ G, h ∈ H, k ∈ K, g(hk)g−1 = (ghg−1)(gkg−1) = h′k′ ∈ HK, so HK ◁ G.
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For N ◁ G, let G/N denote the family of left cosets of N . Then for all a, b ∈ G, (aN)(bN) = (ab)N , and

G/N forms a group under this product.

The �rst claim is because (aN)(bN) = a(Nb)N = a(bN)N = (ab)NN = (ab)N . Note that the product does

not depend on the choice of coset representatives: If aN = a′N and bN = b′N , then (ab)N = (a′b′)N .

Now this product formula shows G/N is closed under multiplication, which we already know to be associative.

Since (aN)N = aN and N(aN) = N(Na) = Na = aN , we see that N = eN serves as the identity. Since

(aN)(a−1N) = (aa−1)N = N and (a−1N)(aN) = (a−1a)N = N , the inverse of aN is a−1N .

The group G/N is called a quotient group. Its order is [G : N ], so if G is �nite, then |G/N | = |G| / |N |.

Observe that if N ◁ G, then the natural map π : G→ G/N de�ned by π(g) = gN de�nes a homomorphism

with ker(π) = {g ∈ G : gN = N} = N , providing a converse to our previous observation that kernels of

homomorphisms are normal subgroups.

In fact, up to isomorphism, the homomorphic images of G are precisely its quotients by normal subgroups.

Theorem 1.1 (First Isomorphism Theorem). If φ : G→ K is a homomorphism, then ker(φ) ◁ G and

G/ker(φ) ∼= Im(φ).

Proof. Normality of N = ker(φ) has already been established. The map ψ : G/N → Im(φ) given by

ψ(gN) = φ(g) is well-de�ned because ψ(gN) = φ(g) ∈ Im(φ) for all g ∈ G, and if gN = g′N , then g = g′n

for some n ∈ N , hence ψ(gN) = φ(g) = φ(g′n) = φ(g′)φ(n) = φ(g′) = ψ(g′N).

Since φ is a homomorphism and N is normal, ψ(gNhN) = ψ(ghN) = φ(gh) = φ(g)φ(h) = ψ(gN)ψ(hN),

thus ψ is a homomorphism. It is surjective because if k ∈ Im(φ), then k = φ(g) = ψ(gN) for some g ∈ G,

and it is injective because eK = ψ(gN) = φ(g) implies g ∈ ker(φ) = N , hence gN = N = eG/N . □

Remark 1.1. See the appendix for isomorphism theorems two, three, and four.

Example 1.17. Suppose that n = 2m for some integer m ≥ 2. Then the dihedral group Dn has 2 conjugacy

classes of size 1, {1} and {rm}; m−1 of size 2, {r±k} for k = 1, . . . ,m−1; and 2 of sizem, {r2ks : 1 ≤ k ≤ m},
{r2k−1s : 1 ≤ k ≤ m}. This follows from rirj = ri+j and rks = (rks)−1 = sr−k, hence

rjrkr−j = rk, (rjs)rk(rjs) = r−k,

rjsr−j = r2js = (rjs)s(rjs),

rj(rs)r−j = r2j+1s = (rjs)(rs)(rjs).

The proper normal subgroups of Dn are thus the cyclic groups
〈
rd
〉
with d

∣∣n and the dihedral groups〈
r2, s

〉
and

〈
r2, rs

〉
. The former is because ⟨r⟩ is a subgroup of index 2 and all subgroups of a cyclic normal

subgroup are normal. For the latter, note that if a normal subgroup N contains a re�ection, then it contains

all re�ections of the same parity by the conjugacy calculations above. As N also contains the identity, we

must have |N | > n/2, hence [Dn : N ] = 2n/ |N | < 4. Since N is proper and ⟨s, rs⟩ = Dn, it can only contain

half of the re�ections, and since any re�ection outside of N has order 2 in Dn/N , [Dn : N ] must be even.

It follows that |N | = n. Because n/2 of the elements are re�ections, the remaining must be rotations, and

taken together, they generate a cyclic subgroup of order n/2, the only one of which is
〈
r2
〉
. As

〈
r2, s

〉
and〈

r2, rs
〉
are the only subgroups satisfying these requirements and both have index 2, the assertion follows.
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The fourth isomorphism theorem establishes a nice correspondence between subgroups of G/N and subgroups

of G containing N that can be harnessed to prove a converse to Lagrange's theorem for abelian groups.

Theorem 1.2. If G is a �nite abelian group with order divisible by d, then G has a subgroup of order d.

Proof. We �rst show that if |G| = mp with p prime, then G has an element of order p. Example 1.11

establishes this claim when m = 1. Assume for the sake of induction that the statement holds for all integers

1 ≤ m < n, and let G be an abelian group of order np. Choose an element a ̸= e so that k = o(a) > 1. If

k = jp, then o(aj) = p. Otherwise, H = ⟨a⟩ is a normal subgroup and |G/H| = n/k is divisible by p, so the

inductive hypothesis guarantees the existence of some bH ∈ G/H with order p. If o(b) = m, then we must

have that (bH)m = bmH = H, so m = ℓp and o(bℓ) = p.

Now suppose that d divides |G| and let p be a prime divisor of d. Then there is a normal subgroup S = ⟨g⟩
of order p so that |G/S| = n/p. By induction on |G|, G/S has a subgroup H ′ of order d/p and Theorem 7.5

shows that H ′ = H/S for some S ≤ H ≤ G. Since d/p = |H ′| = |H| /p, we have proved the claim. □

Observe that for any group G, the map φg : G → G given by φg(h) = ghg−1 is an isomorphism for

each g ∈ G since for any h, k ∈ G, φg(hk) = ghkg−1 = ghg−1gkg−1 = φg(h)φg(k), φg(g
−1hg) = h, and

e = φg(h) = ghg−1 implies h = g−1eg = e.

Isomorphisms from a group to itself are termed automorphisms, and the collection Aut(G) of automorphisms

of G forms a group under function composition. Indeed, if φ, θ ∈ Aut(G), then for any x, y ∈ G, there exist

g, h ∈ G with φ(g) = x and φ(h) = y, so φ−1(xy) = φ−1
(
φ(g)φ(h)

)
= φ−1

(
φ(gh)

)
= gh = φ−1(x)φ−1(y)

and φ
(
θ(xy)

)
= φ

(
θ(x)θ(y)

)
= φ

(
θ(x)

)
φ
(
θ(y)

)
. The claim follows since inverses and compositions of

bijections are bijections, and the identity map serves as eAut(G).

Because the conjugation maps satisfy φg

(
φh(x)

)
= φg(hxh

−1) = g(hxh−1)g−1 = (gh)x(gh)−1 = φgh(x),

we see that Inn(G) = {φg : g ∈ G} forms a subgroup of Aut(G) called the group of inner automorphisms.

(By construction, φ−1g = φg−1 and φe is the identity.) It's normal since for any θ ∈ Aut(G), we have

θφgθ
−1(x) = θ(gθ−1(x)g−1) = θ(g)xθ(g−1) = φθ(g)(x).

In general, a homomorphism is a structure preserving function. It's an isomorphism if bijective and an

automorphism if the domain and range coincide.

Given a set X, we can de�ne Aut0(X) to be the collection of bijections from X to itself, which is easily seen

to form a group under function composition. If |X| = n, we can label the elements x1, . . . , xn, and one can

check that the map f : Sn → Aut0(X) given by f(π)(xk) = xπ(k) is an isomorphism.

Note that if G is a group, then Aut(G) ≤ Aut0(G) and the inclusion is generally strict.

Now a group G is said to act on a set X if there is a homomorphism Φ : G→ Aut0(X).

Alternatively, we can de�ne a group action as a function φ : G × X → X that satis�es φ(e, x) = x and

φ(gh, x) = φ
(
g, φ(h, x)

)
for all x ∈ X, g, h ∈ G.

These de�nitions are seen to be equivalent under the identi�cation φ(g, ·) = Φ(g).

(Veri�cation of this claim is routine. For instance, φ(g, ·) : X → X is 1-1 since φ(g, x) = φ(g, y) implies

x = φ(g−1g, x) = φ
(
g−1, φ(g, x)

)
= φ

(
g−1, φ(g, y)

)
= φ(g−1g, y) = y. Similarly, if φ(g, x) = y, then

φ(g−1, y) = φ
(
g−1, φ(g, x)

)
= φ(g−1g, x) = x, hence φ(g, ·)−1 = φ(g−1, ·).)
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In addition to abstracting fundamental properties of many common mathematical constructs in order to

suggest analogies, establish sweeping results, and illuminate aspects otherwise obscured by extraneous details,

a key feature of groups is that they encode symmetries via their actions on sets.

To give some examples, Sn acts on [n] by permuting its elements, φ(σ, n) = σ(n); GL(V ) acts linearly on V

by φ(T,x) = T (x); and Dn acts on the vertices of a regular n-gon by rotation and re�ection.

If Φ : G → Aut0(X) is injective, we say that the action is faithful. Equivalently, the action φ : G×X → X

is faithful if φ(g, x) = x for all x ∈ X implies g = e.

A stronger property is that φ(g, x) = x for some x ∈ X implies g = e, in which case the action is called free.

Finally, if for every x, y ∈ X, there is a g ∈ G with φ(g, x) = y, then the action is said to be transitive.

Example 1.18. Every group acts on itself by conjugation since the map φ : G × G → G de�ned by

φ(g, h) = ghg−1 satis�es φ(e, h) = h and φ(gh, k) = (gh)k(gh)−1 = g(hkh−1)g−1 = φ
(
g, φ(h, k)

)
.

This action is not transitive if |G| > 1 because, for instance, the identity is not conjugate to anything else.

It is also not free in this case since φ(h, h) = h for all h ∈ G.

It is faithful if and only if Z(G) = {g ∈ G : gh = hg for all h ∈ G} consists only of the identity�for example,

when G = Sn with n > 2.

Example 1.19. G also acts on itself by (left) translation since the map τ : G×G→ G de�ned by τ(g, h) = gh

clearly satis�es the de�nition.

(Note that if g ̸= id, then τ(g, hk) = ghk ̸= ghgk = τ(g, h)τ(g, k), so τ(g, ·) does not de�ne a homomorphism

from G to itself; it is an automorphism in the category of sets, but not groups.)

This action is transitive since for any g, h ∈ G, τ(hg−1, g) = h, and it is free (and thus faithful) since

h = τ(g, h) = gh implies g = e. '

If |G| = n, writing τg for the automorphism τg(k) = τ(g, k), we have τg
(
τh(k)

)
= τg(hk) = (gh)k = τgh(k),

so g 7→ τg is a homomorphism from G to Aut0(G) ∼= Sn. Since the kernel is trivial, this shows that G is

isomorphic to a subgroup of Sn, a fact known as Cayley's theorem.

Example 1.20. An action φ : G × X → X induces an action of G on Y X = {functions from X to Y }
de�ned by φ̃(a, f)(x) = f

(
φ(a−1, x)

)
. This follows from φ̃(e, f)(x) = f

(
φ(e, x)

)
= f(x) and

φ̃(ab, f)(x) = f
(
φ(b−1a−1, x)

)
= f

(
φ
(
b−1, φ(a−1, x)

))
= φ̃

(
b, f
)(
φ(a−1, x)

)
= φ̃

(
a, φ̃(b, f)

)
(x).

Given a group action φ : G×X → X, the orbit of x ∈ X is the subset of X de�ned by

O(x) = {y ∈ X : y = φ(g, x) for some g ∈ G}

Since x ∼ y if y ∈ O(x) is easily seen to be an equivalence relation, the orbits partition X. The action is

transitive if and only if there is a single orbit.

The stabilizer of x ∈ X is the subset of G de�ned by

Gx = {g ∈ G : φ(g, x) = x}.

If g, h ∈ Gx, then x = φ(h−1h, x) = φ
(
h−1, φ(h, x)

)
= φ(h−1, x) and φ(gh, x) = φ

(
g, φ(h, x)

)
= φ(g, x) = x,

so we see that Gx ≤ G. The action is free precisely when all stabilizers are tivial.
12



Example 1.21. If φ : G×X → X is a group action and y ∈ O(x), then there is some g ∈ G with φ(g, x) = y.

It follows that for any h ∈ Gx, φ(ghg
−1, y) = φ

(
gh, φ(g−1, y)

)
= φ(gh, x) = φ

(
g, φ(h, x)

)
= φ(g, x) = y,

thus ghg−1 ∈ Gy. Likewise, if h
′ ∈ Gy, then φ(g

−1h′g, x) = φ(g−1h′, y) = φ(g−1, y) = x.

We conclude that the stabilizer subgroups of elements in a common orbit are conjugate.

Example 1.22. IfG acts on itself by conjugation, then the orbit of x ∈ G isO(x) = {gxg−1 : g ∈ G} = cl(x),

and the stabilizer is Gx = {g ∈ G : gxg−1 = x} = CG(x), the set of elements that commute with x.

More generally, given S ⊆ G, we can de�ne the centralizer CG(S) = {g ∈ G : gsg−1 = s for all s ∈ S} and

the normalizer NG(S) = {g ∈ G : gSg−1 = S}.

One readily checks that CG(S) ≤ NG(S) ≤ G for all S ⊆ G. If S ≤ G, then for any a ∈ NG(S), b ∈ CG(S),

s ∈ S, writing t = a−1sa ∈ S gives (aba−1)s(aba−1)−1 = (ab)(a−1sa)(ab)−1 = a(btb−1)a−1 = ata−1 = s,

hence CG(S) ◁ NG(S).

We say that Z(G) = CG(G) is the center of G. Since xg−1 = g−1x and thus gxg−1 = x for all x ∈ Z(G),

g ∈ G, we see that H ≤ Z(G) implies H ◁ G.

To simplify notation going forward, we write gx = φ(g, x) when no confusion is likely to arise. With this

convention, the de�ning properties are ex = x and (gh)x = g(hx).

Let G/Gx be the family of left cosets of Gx and consider the map ϕ : G/Gx → O(x) given by ϕ(aGx) = ax.

This is well-de�ned since aGx = bGx implies a−1b ∈ Gx, so ϕ(bGx) = bx = a(a−1b)x = ax = ϕ(aGx), and it

is surjective since y ∈ O(x) implies y = ax = ϕ(aGx) for some a ∈ G. It's injective since ϕ(aGx) = ϕ(bGx)

implies (a−1b)x = x and thus aGx = bGx.

Since ϕ is a bijection, we have |O(x)| = |G/Gx| = [G : Gx]. If G is �nite, then |O(x)| = |G| / |Gx|, a result

known as the orbit-stabilizer theorem.

Example 1.23. Suppose that a �nite group G acts on some set X. Write X/G for the collection of disjoint

orbits in X, de�ne Xg =
{
x ∈ X : gx = x

}
, and set F =

{
(g, x) ∈ G × X : gx = x

}
. On the one hand,

|F | =
∑

g∈G |Xg|, and on the other,

|F | =
∑
x∈X

|Gx| =
∑
x∈X

|G|
|O(x)|

= |G|
∑

A∈X/G

∑
x∈A

1

|O(x)|
= |G|

∑
A∈X/G

1 = |G| |X/G|

since X is the disjoint union of its orbits and x ∈ A implies |O(x)| = |A|.

Combining these observations yields the lemma that is not Burnside's, |X/G| = 1
|G|
∑

g∈G |Xg|. In words,

the number of orbits is equal to the average number of �xed points.

We have seen that whenG acts on itself by conjugation, the orbits are the conjugacy classes and the stabilizers

are the centralizers. The orbit-stabilizer theorem thus implies that |cl(x)| = [G : CG(x)] divides |G| if the
latter is �nite.

Now x ∈ Z(G) i� cl(x) = {x}, so if {xi}i∈I are representatives of the conjugacy classes having size greater

than one, expressing G as the disjoint union of its conjugacy classes yields the class equation

|G| = |Z(G)|+
∑
i∈I

|cl(xi)| .
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Example 1.24. If |G| = pk for some prime p and positive integer k, then for each x ∈ G \ Z(G), CG(x)

is a proper subgroup of G, so |cl(xi)| = [G : CG(x)] is divisible by p. The class equation then implies that

|Z(G)| is divisible by p, so the center is nontrivial.

As such, when k = 2, we must have |Z(G)| ∈ {p, p2}. If |Z(G)| = p, G/Z(G) has order p and thus is cyclic,

say G/Z(G) = ⟨hZ(G)⟩. This means that for any x ∈ G, xZ(G) = hmZ(G) for some m, hence x = hmz for

some z ∈ Z. Thus if x, x′ ∈ G, then xx′ = hmzhm
′
z′ = z′hmzhm

′
= z′hm

′
hmz = hm

′
z′hmz = x′x, so G is

abelian, contradicting Z(G) a proper subgroup of G. We conclude that |Z(G)| = p2, hence G = Z(G).

Note that while groups of prime or prime-squared order are necessarily abelian, the dihedral group D4 is

nonabelian of order 23.

We can also use the class equation to give a nice proof of Sylow's theorem on the existence of subgroups of

prime power order. The argument is similar to and relies upon Theorem 1.2.

Theorem 1.3 (Sylow I). If p is prime and pk divides |G|, then G has a subgroup of order pk.

Proof. We proceed by strong induction on |G|, observing that the G = {e} case is vacuously true. For

the inductive step, suppose �rst that p divides |Z(G)|. Then Theorem 1.2 shows that Z(G) and thus G

has a (necessarily normal) subgroup H of order p, and the inductive hypothesis ensures that G/H has a

subgroup K of order pk−1. Theorem 7.5 guarantees the existence of some H ≤ K ′ ≤ G with K ′/H = K

and |K ′| = |G| /[G : K ′] = |G/H| |H| /[G/H : K] = |H| |K| = pk.

If p does not divide |Z(G)|, then p does not divide some |cl(xi)|, so CG(xi) is a subgroup of order |G| / |cl(xi)|,
which is less than |G| and divisible by pk, thus CG(xi) contains a subgroup of order pk by the inductive

hypothesis. □

Remark 1.2. The k = 1 case of Theorem 1.3 shows that any group with order divisible by a prime p has an

element of order p, a result known as Cauchy's theorem.

A (sub)group in which the order of every element is a power of a prime p is called a p-(sub)group.

For �nite (sub)groups, this is equivalent to having order a power of p: Lagrange's theorem ensures that

the order of every element divides the order of the group, and if q is a di�erent prime divisor of the order,

Cauchy's theorem gives an element of order q.

If pk divides |G|, but pk+1 does not, we say that a subgroup of order pk is a p-Sylow subgroup of G. The �rst

Sylow theorem guarantees that such subgroups always exist, and Sylow theorems two and three give further

details about their nature and number.

Our next example establishes the important fact that if n ≥ 5, then An is simple�that is, it has no nontrivial

proper normal subgroups. This implies in particular that it has no subgroup of order |An| /2, showing that

Theorem 1.2 does not extend to arbitrary groups.

Example 1.25. Let n ≥ 5. We will establish simplicity of An by showing that it is generated by 3-cycles,

all of which are conjugate in An. We then argue that a nontrivial normal subgroup of An contains a 3-cycle.

It follows that it contains all 3-cycles and thus all of An.

Our proof makes use of the general observation that if N ◁ G, n ∈ N , and g ∈ G, then N necessarily

contains the commutator
[
g, n
]
:= gng−1n−1.
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We �rst note that every σ ∈ An can be factored as σ = τ1τ2 · · · τ2r for some adjacently distinct transpositions

τ1, . . . , τ2r. For each s ∈ [r], either τ2s−1 = (i j), τ2s = (j k) for distinct i, j, k and thus τ2s−1τ2s = (i j k),

or τ2s−1 = (i j), τ2s = (k ℓ) for distinct i, j, k, ℓ and thus τ2s−1τ2s = (i j)(j k)(j k)(k ℓ) = (i j k)(j k ℓ). This

shows that every permutation in An can be expressed a product of 3-cycles.

To see that the 3-cycles are all conjugate in An, observe that for any 3-cycle β, there is some σ ∈ Sn with

σβσ−1 = (123) because all elements of a given cycle type are conjugate in Sn. If σ ∈ An, we are done.

Otherwise, σ̃ = (45)σ ∈ An and σ̃βσ̃−1 = (45)(123)(45) = (123). (Note the we needed n ≥ 5 for this

argument to work.) The assertion follows since conjugacy is symmetric and transitive.

We now embark on an induction proof of the claim. For the base case, suppose that N is a nontrivial

normal subgroup of A5 and π is a nonidentity element of N . If π is a 3-cycle, then we are done. Otherwise,

evenness implies that π is of the form (i j)(k ℓ) or (i j k ℓm) for distinct i, j, k, ℓ,m. In the �rst case, N must

contain
[
(i j m), (i j)(k ℓ)

]
= (i j m)(i j)(k ℓ)(mj i)(i j)(k ℓ) = (im j), and in the second case N must contain[

(i j k), (i j k ℓm)
]
= (i j k)(i j k ℓm)(k j i)(mℓk j i) = (i j ℓ).

Now suppose that An is simple for some �xed n ≥ 5. For each i ∈ [n+1], de�ne Hi = {σ ∈ An+1 : σ(i) = i}
so that Hi is a subgroup of An+1 that is isomorphic to An and thus is simple by the induction hypothesis.

Let N be a nontrivial normal subgroup of An+1 and choose some π ∈ N \
{
(1)
}
. It su�ces to show that

there is an i ∈ [n + 1] with π(i) = i since this implies that N ∩ Hi is a nontrivial normal subgroup of the

simple group Hi and thus equals Hi. As Hi
∼= An contains a 3-cycle, N does as well, hence N = An+1.

To this end, let j, k, ℓ ∈ [n + 1] be distinct with π(j) = k and π(k) ̸= ℓ, and set σ = (j k ℓ) ∈ An+1.

Then [π, σ] = (πσπ−1)σ−1 =
(
π(j)π(k)π(ℓ)

)
(ℓ k j) is not the identity and �xes all points outside of{

i, j, k, π(i), π(j), π(k)
}
. Since π(j) = k, this set has cardinality less than 6 ≤ n + 1, hence [π, σ] ∈ N

has a �xed point and the proof is complete.

Simple groups are important as they may be regarded as the basic building blocks for all �nite groups via the

Jordan-Hölder theorem, and the simplicity of An is at the heart of the insolvability of general polynomials

by radicals addressed in Galois theory.

While we do not need to go into these details here, the process of building new groups from old will be

important in what follows.

If H and K are groups, we de�ne their (external) direct product H × K to be the set of all ordered pairs

(h, k) with h ∈ H and k ∈ K equipped with the operation (h1, k1)(h2, k2) = (h1h2, k1, k2). This is easily

seen to de�ne a group with identity (eH , eK) and inverses (h, k)−1 = (h−1, k−1).

Clearly |H ×K| = |H| |K|, and the map (h, k) 7→ (k, h) shows that H ×K ∼= K ×H.

Moreover, the projection maps π1
(
(h, k)

)
= h and π2

(
(h, k)

)
= k de�ne isomorphisms from the subgroups{

(h, eK) : h ∈ H
}
and

{
(eH , k) : k ∈ K

}
to H and K, respectively. These subgroups are normal since, for

instance, (h, k)(h0, eK)(h, k)−1 = (hh0h
−1, eK).

Note too that if φ : H → H ′ and ϕ : K → K ′ are isomorphisms, then the map (h, k) 7→
(
φ(h), ϕ(k)

)
shows

that H ×K ∼= H ′ ×K ′.

If N ◁ G and N ′ ◁ G′, then the function φ : G×G′ → (G/N)×(G′/N ′) de�ned by φ
(
(g, g′)

)
= (gN, g′N ′) is

readily seen to be a surjective homomorphism with kernelN×N ′, so Theorem 1.1 tells us thatN×N ′ ◁ G×G′

with (G×G′)/(N ×N ′) ∼= (G/N)× (G′/N ′).
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There is a related construction that allows one to factor a group as an internal direct product of normal

subgroups: If H,K ◁ G with H ∩K = {e} and HK = G, then G ∼= H ×K.

The assumption that HK = G ensures that every g ∈ G can be written as g = hk for some h ∈ H, k ∈ K,

and this decomposition is unique since h1k1 = h2k2 implies h−12 h1 = k2k
−1
1 ∈ H∩K = {e}. As such, the map

φ : H×K → G de�ned by φ
(
(h, k)

)
= hk is bijective. To see that it is a homomorphism, note that if h ∈ H,

k ∈ K, then [h, k] = (hkh−1)k−1 ∈ K and [h, k] = h(kh−1k−1) ∈ H, hence hkh−1k−1 = e or hk = kh.

Accordingly, φ
(
(h1, k1)(h2, k2)

)
= φ

(
(h1h2, k1k2)

)
= h1h2k1k2 = h1k1h2k2 = φ

(
(h1, k1)

)
φ
(
(h2, k2)

)
.

Direct products can be regarded as a partial inverse to taking quotients: If G is the internal direct product

of H,K ◁ G, then it must be the case that K ∼= G/H since the map hk 7→ k is a surjective homomorphism

from G to K with kernel H.

Example 1.26. Suppose that (m,n) = 1 and denote the congruence class of a ∈ Z modulo k by [a]k.

Since [ab]k = [a]k[b]k, the map ϕ : Z → (Z/mZ) × (Z/nZ) given by ϕ(a) =
(
[a]m, [a]n

)
is a surjective

homomorphism. The kernel is mnZ because ϕ(a) =
(
[0]m, [0]n

)
if and only if m,n

∣∣ a, if and only if mn
∣∣ a.

Therefore, the �rst isomorphism theorem tells us that (Z/mZ)× (Z/nZ) ∼= Z/mnZ.

Observe that if (m,n) = d > 1, then (Z/mZ)× (Z/nZ) is not isomorphic to Z/mnZ since every element of

the former has order at most mn/d and the latter contains an element of order mn.

Example 1.27. Suppose that H,K ≤ G with G �nite. Then H ×K acts on HK ⊆ G by (h, k)x = hxk−1.

This action is transitive since for any x = h1k1, y = h2k2, (h2h
−1
1 , k−12 k1)x = y, thus there is a single

orbit. Since the stabilizer of the identity is Ge =
{
(h, k) ∈ H ×K : h = k

}
=
{
(x, x) : x ∈ H ∩K

}
, the

orbit-stabilizer theorem shows that |HK| = |H ×K| / |Ge| = |H| |K| / |H ∩K|.

One can extend the external direct product construction to more than two groups by de�ning G1 × · · ·×Gn

to be the Cartesian product of G1, . . . , Gk with coordinatewise multiplication.

Since
(
(g1, . . . , gn), gn+1

)
7→ (g1, . . . , gn+1) is an isomorphism from (G1×· · ·×Gn)×Gn+1 to G1×· · ·×Gn+1,

we can generalize the many of the preceding results by induction.

For example, if Hk ◁ Gk for k = 1, . . . , n+ 1, then

(G1 × · · · ×Gn+1)/(H1 × · · · ×Hn+1) ∼= [(G1 × · · · ×Gn)×Gn+1]/[(H1 × · · · ×Hn)×Hn+1]

∼= [(G1 × · · · ×Gn)/(H1 × · · · ×Hn)]× (Gn+1/Hn+1)

∼= (G1/H1)× · · · × (Gn+1/Hn+1).

Similarly, if n = n1 · · ·nk with n1, . . . , nk pairwise coprime, then Z/nZ ∼= (Z/n1Z)× · · · × (Z/nkZ).

We say that G is the internal direct product of H1, . . . ,Hk ≤ G if the map φ : H1 × · · · ×Hk → G de�ned

by φ
(
(h1, . . . , hk)

)
= h1 · · ·hk is an isomorphism.

An induction argument shows that this is true if and only if G = H1 · · ·Hk and for each i ∈ [k] we have

Hi ◁ G and Hi ∩ (H1 · · ·Hi−1) = {e}.

Note that normality of the Hk's guarantees that the product of any of them is itself a subgroup.

Our immediate concern is with abelian groups, in which all subgroups are normal, and it is straightforward

to establish the above assertion directly in this case:
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Suppose that φ is an isomorphism. Then G = H1 · · ·Hk by surjectivity. If h ∈ Hi ∩ (H1 · · ·Hi−1) ≤ G,

then h ∈ Hi and h
−1 ∈ H1 · · ·Hi−1, so there exist h1, . . . , hi−1 with hj ∈ Hj and h1 · · ·hi−1 = h−1, hence

e = h1 · · ·hi−1he · · · e and we conclude that h = e by injectivity of φ.

Conversely, suppose G = H1 · · ·Hk and Hi ∩ (H1 · · ·Hi−1) = {e} for all i. The �rst condition implies φ

is surjective. Now observe that if h1 · · ·hk = e, then h1 · · ·hk−1 = h−1k , hence hk ∈ Hk ∩ (H1 · · ·Hk−1),

so the second condition implies hk = e. This in turn implies e = h1 · · ·hk−1, thus h1 · · ·hk−2 = h−1k−1, so

hk−1 ∈ Hk−1 ∩ (H1 · · ·Hk−2) = {e}. Continuing thusly gives h1 = · · · = hk = e and we conclude that φ

is injective. Finally, abelianity gives φ
(
(h1, . . . , hk)(h

′
1, . . . , h

′
k)
)
= φ

(
(h1h

′
1, . . . , hkh

′
k)
)
= h1h

′
1 · · ·hkh′k =

h1 · · ·hkh′1 · · ·h′k = φ
(
(h1, . . . , hk)

)
φ
(
(h′1, . . . , h

′
k)
)
.

Example 1.28. Let G be abelian of order n = pe11 · · · pekk with p1 < · · · < pk prime and e1, . . . , ek ≥ 1.

Sylow's theorem ensures that for each j ∈ [k], there is a subgroup Aj ≤ G of order p
ej
j . In fact, Aj is the only

subgroup of this order since it's normal and all pj-Sylow subgroups are conjugate. Writing nj = pe11 · · · pej−1

j−1 ,

we have |Ai| = pe
i

i

∣∣nj for each i < j, so if g ∈ A1 · · ·Aj−1, then g
nj = h

nj

1 · · ·hnj

j−1 = e and thus o(g)
∣∣nj .

Since any h ∈ Aj \{e} has order pα(h)j for some α(h) ≥ 1, o(h) ∤ nj . This shows that Aj∩(A1 · · ·Aj−1) = {e}.

Now |A1A2| = |A1| |A2| / |A1 ∩A2| = |A1| |A2| and if |A1 · · ·Aj−1| = |A1| · · · |Aj−1|, then |A1 · · ·Aj | =

|A1 · · ·Aj−1| |Aj | / |(A1 · · ·Aj−1) ∩Aj | = |A1 · · ·Aj−1| |Aj | = |A1| · · · |Aj |. It follows that A1 · · ·Ak ≤ G has

order |A1 · · ·Ak| = |A1| · · · |Ak| = |G|, hence A1 · · ·Ak = G.

We have thus proved that G is the internal direct product of A1, . . . , Ak.

If G is a �nite abelian group and p is a prime divisor of |G|, we call Gp = {x ∈ G : xp
n

= e for some n ≥ 1}
the p-primary component of G. Clearly Gp is a p-subgroup of G containing the unique p-Sylow subgroup

Ap. Since the latter is a p-subgroup of maximal order, we have Gp = Ap. Accordingly, the factorization of

an abelian group as a direct product of its Sylow subgroups is often called the primary decomposition of G.

Note that if G and G′ are abelian groups and φ : G → G′ is an isomorphism, then for each primary

subgroup Gp ≤ G, φ(Gp) is a subgroup of G′ having the same order, hence the restriction of φ to Gp

provides an isomorphism between Gp and G′p. Conversely, if Gp
∼= G′p for each p dividing |G| = |G′|, then

G ∼= Gp1
× · · · ×Gpk

∼= G′p1
× · · · ×G′pk

∼= G′. That is, primary decompositions of �nite abelian groups are

unique up to isomorphism.

Example 1.29. Suppose that G is abelian of order pn for some prime p and positive integer n. We will

prove by induction on n that if a ∈ G is an element of maximal order, then there is some K ◁ G with

G ∼= ⟨a⟩ ×K. When n = 1, G is cyclic so we can take a to be a generator and K = {e}. Suppose then that

the claim holds for all 1 ≤ k < n, and let a ∈ G be of maximal order, say o(a) = pm. This guarantees that

gp
m

= e for all g ∈ G, and we can assume that G ̸= ⟨a⟩ as the result is immediate in this case.

Let h be an element of minimal order in G\⟨a⟩ and set H = ⟨h⟩. We will prove that ⟨a⟩∩H = {e} by showing
that |H| = p because then ⟨a⟩ ∩H ≤ H must have order 1 or p and the latter is precluded by h /∈ ⟨a⟩. Since
G is a p-group and h ̸= e, o(hp) = o(h)/p < o(h), hence hp ∈ ⟨a⟩ by our minimality assumption on o(h).

Accordingly, hp = ar for some r ≥ 1 and thus (ar)p
m−1

= (hp)p
m−1

= hp
m

= e. It follows that o(ar) ≤ pm−1,

so ar does not generate ⟨a⟩, so r = ps for some s ∈ N. Now g = a−sh does not belong to ⟨a⟩ since this would
imply that h = asg ∈ ⟨a⟩. Moreover, gp = a−pshp = (ar)−1hp = e. As we have exhibited an element of order

p outside of ⟨a⟩ and H was generated by an element outside of ⟨a⟩ having minimal order, we are forced to

conclude that |H| = o(h) = p.
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The next step is to show that the order of aH inG/H is o(a) = pm. Indeed, G/H is a p-group, so if |aH| < pm,

we must have H = (aH)p
m−1

= ap
m−1

H, so that ap
m−1 ∈ H ∩⟨a⟩ = {e}, a contradiction. Since we have seen

that every g ∈ G satis�es, gp
m

= e and thus (gH)p
m

= gp
m

H = H, aH has maximal order in G/H. The

induction hypothesis and Theorem 7.5 thus give a subgroupK of G containingH with G/H ∼= ⟨aH⟩×(K/H).

It follows that for any g ∈ G, there exist 1 ≤ j ≤ pm, k ∈ K with gH = (aH)j(kH) = (ajk)H, hence

g = ajkh for some h ∈ H. As H ≤ K, kh ∈ K, which shows that G = ⟨a⟩K. Also, if b ∈ ⟨a⟩ ∩ K, then

bH ∈ ⟨aH⟩ ∩ (K/H) = {H}, so b ∈ ⟨a⟩ ∩H = {e}, and we conclude that G ∼= ⟨a⟩ ×K.

Applying this result again gives K ∼= ⟨a′⟩ ×K ′. Since the order of the second factor decreases to 1 as the

procedure is iterated, we see that G is an internal direct product of cyclic subgroups of prime power order.

The orders of these subgroups are called elementary divisors and they are uniquely determined by G because

if H1×· · ·×Hm
∼= G ∼= K1×· · ·×Kn are decompositions into cyclic subgroups of nonincreasing prime-power

orders, then it must be the case that |H1| = |K1| is the largest order of any element in G, hence H1
∼= K1,

and the other factors likewise agree by induction on |G|.

Since we can uniquely factor an arbitrary �nite abelian group as a direct product of its Sylow subgroups

and then uniquely factor each of those p-groups as a direct product of cyclic groups of prime power order,

we see that every �nite abelian group is isomorphic to a direct product of cyclic subgroups of prime power

order, and any such decomposition consists of cyclic groups of the same size and multiplicity.

Alternatively, an abelian group G of order pe11 · · · pekk can be expressed as the direct product of subgroups

A1, . . . , Ak where |Ai| = peii . These primary subgroups in turn factor as direct products of cyclic groups

Ai
∼= Ci,1 × · · · × Ci,ℓ(i) where |Ci,j | = p

αi,j

i with αi,1 ≥ · · · ≥ αi,ℓ(i) and αi,1 + · · ·+ αi,ℓ(i) = ei.

Let ℓ = maxi ℓ(i), set αi,j = 0 for ℓ(i) < j ≤ ℓ, and form the k × ℓ matrix E having (i, j)-entry Ei,j = p
αi,j

i .

De�ne the invariant factors cj =
∏k

i=1Ei,j for j = 1, . . . , ℓ. Then cℓ | cℓ−1 | · · · | c1 and, by Example 1.26,

(Z/cjZ) ∼= (Z/pα1,j

1 Z)× · · · × (Z/pαk,j

k Z) for each j, hence G ∼= (Z/c1Z)× · · · × (Z/cℓZ).

Since the elementary divisors determine the invariant factors and can also be recovered from them via prime

factorization, we see that this decomposition is also unique.

We record this observation as the fundamental theorem of �nite abelian groups.

Theorem 1.4. If G is a �nite abelian group, then there exist integers c1, . . . , cℓ such that cj | cj−1 for

j = 2, . . . , ℓ and G ∼= (Z/c1Z)× · · · × (Z/cℓZ). Furthermore, ℓ and c1, . . . , cℓ are uniquely determined by G.

Before moving on to representation theory, we brie�y mention an extension of the direct product construction

that is useful for factoring groups and building new ones from old.

To wit, if K,Q ≤ G with K ∩Q = {e} and KQ = G, then we say that Q is a complement of K in G.

If K ◁ G and Q is a complement of K in G, we say that G is a semidirect product of K by Q, written

G = K ⋊Q. (Note that we may not have Q ◁ G; if so, G is a direct product of K and Q.)

Since Q is a complement of K, each g ∈ G can be uniquely expressed as g = kq for some k ∈ K, q ∈ Q,

and normality of K enables us to preserve this structure under multiplication by writing (k1q1)(k2q2) =

(k1 · q1k2q−11 )(q1q2).
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If ι : Q → G is the embedding ι(q) = q and π : G → G/K is the natural map, then π ◦ ι : Q → G/K is a

composition of homomorphisms and thus is a homomorphism. It is injective since q1K = q2K implies there

is some k ∈ K with q1 = q2k and thus q−12 q1 ∈ K ∩Q = {e}. Since |QK| = |Q| |K| / |Q ∩K| = |Q| |K| and
thus |G/K| = |G| / |K| = |QK| / |K| = |Q|, π ◦ ι must be surjective as well, hence Q ∼= G/K.

Example 1.30. The dihedral group Dn is easily seen to be a semidirect product of the normal subgroup

⟨r⟩ ∼= Z/nZ and its complement Q = ⟨s⟩ ∼= Z/2Z. It is not a direct product of these cyclic groups since it is

nonabelian, but it is very natural to factor it into rotations and re�ections.

When n = 4, we also have the normal subgroup K =
〈
r2, s

〉
(which consists of four self-inverse elements and

is thus isomorphic to the Klein four-group V ∼= (Z/2Z)2), and it is easy to see that Q = ⟨rs⟩ ∼= Z/2Z serves

as a complement. Thus D4 can be written as a semidirect product of Z/2Z × Z/2Z by Z/2Z as well as a

semidirect product of Z/4Z by Z/2Z.

Example 1.31. Similarly, Sn = An⋊⟨(12)⟩. When n = 3, we have An
∼= Z/3Z, hence S3

∼= (Z/3Z)⋊(Z/2Z).

Z/6Z is a direct product and thus a semidirect product of (Z/3Z) and (Z/2Z) as well. These groups are not
isomorphic as the latter is abelian and the former is not, so we see again that semidirect products are not

determined by the isomorphism classes of the factors.

Example 1.32. The discrete Heisenberg group consists of all integer matrices of the form

1 x z

0 1 y

0 0 1

.
Such a matrix is more succinctly represented by the 3-tuple (x, y, z) ∈ Z3, in which case the group law reads

(x, y, z)(x′, y′, z′) = (x+x′, y+y′, z+z′+xy′). Clearly (0, 0, 0) is the identity and (x, y, z)−1 = (−x,−y, xy−z).

Keeping this notation, consider the subgroups M =
{
(x, 0, 0) : x ∈ Z

}
and N =

{
(0, y, z) : y, z ∈ Z

}
.

Since (x, 0, 0)(x′, 0, 0) = (x + x′, 0, 0) and (0, y, z)(0, y′, z′) = (0, y + y′, z + z′), we see that M ∼= Z and

N ∼= Z2. Moreover, M ∩ N = {(0, 0, 0)}, and for any x, y, z ∈ Z, (x, 0, 0)(0, y, z − xy) = (x, y, z) and

(x, 0, 0)(0, y, z)(x, 0, 0)−1 = (x, y, z + xy)(−x, 0, 0) = (0, y, z + xy), so H ∼= Z2 ⋊ Z.

If G = K ⋊ Q, then the map θ : Q → Aut(K) de�ned by θ(q) = θq with θq(k) = qkq−1 is clearly a

homomorphism, and we have (k1q1)(k2q2) = (k1 · q1k2q−11 )(q1q2) =
(
k1θq1(k2)

)
(q1q2).

This suggests that a semidirect product depends not only on the normal subgroup K and its complement Q,

but also on the `way in which K is normal in G' as determined by the conjugation action of Q on K, which

helps to demystify the observation that semidirect products of isomorphic groups need not be isomorphic.

It also suggests a way to combine general groups into external semidirect products:

If G and H are groups and θ : H → Aut(G) is a homomorphism, de�ne the semidirect product G ⋊θ H to

be the set
{
(a, x) : a ∈ G, x ∈ H

}
equipped with the group law (a, x)(b, y) = (aθx(b), xy) where θx = θ(x).

(When θ maps every x ∈ H to the identity map on G, we recover the direct product as a special case.)

G⋊θ H is certainly closed under this product, and we compute

[(a, x)(b, y)](c, z) =
(
aθx(b), xy

)
(c, z) =

(
aθx(b)θxy(c), xyz

)
,

(a, x)[(b, y)(c, z)] = (a, x)
(
bθy(c), yz

)
=
(
aθx
(
bθy(c)

)
, xyz

)
,

so associativity follows from θx
(
bθy(c)

)
= θx(b)θx

(
θy(c)

)
= θx(b)θxy(c).
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Now (eG, eH) is evidently the group identity, so the inverse of (a, x)must be the element (b, y) with (eG, eH) =

(a, x)(b, y) = (aθx(b), xy). Examining the second coordinate shows that y = x−1 and examining the �rst

shows that eG = aθx(b), so that b = θ−1x (a−1) = θx−1(a−1); one easily checks that
(
θx−1(a−1), x−1

)
(a, x) =(

θx−1(a−1)θx−1(a), x−1x
)
=
(
θx−1(eG), eH

)
= (eG, eH) as well.

Moreover, it is routine to show that (a, x) 7→ x is a surjective homomorphism from G ⋊θ H to H with

kernel
{
(a, eH) : a ∈ G

}
. We identify this kernel with G via the isomorphism (a, eH) 7→ a, and we have{

(eG, x) : x ∈ H
} ∼= H by a parallel argument. The two subgroups clearly have only (eG, eH) in common,

and for any (a, x) ∈ G ⋊θ H, we have (a, eH)(eG, x) =
(
aθeH (eG), eHx

)
= (a, x). (We can also write

(a, x) =
(
eGθx

(
θ−1x (a)

)
, xeH

)
= (eG, x)

(
θ−1x (a), eH

)
.)

Finally, observe that (eG, x)(a, eH)(eG, x)
−1 = (eG, x)(a, eH)(eG, x

−1) = (eG, x)(a, x
−1) =

(
eGθx(a), xx

−1) =(
θx(a), eH

)
, so θx corresponds to conjugation by (eG, x) in G⋊θ H.

Remark 1.3. The Schur-Zassenhaus theorem asserts that if N ◁ G with |N | and [G : N ] relatively prime,

then G = N ⋊Q with Q ∼= G/N .
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2 Group Representations

The general idea of representation theory is that one can study a group by letting it act linearly on a vector

space. In this course, we will work exclusively with �nite-dimensional vector spaces over C.

Formally, a representation of a �nite group G is a pair (ρ, V ) where V is a vector space and ρ is a homomor-

phism from G to GL(V ), the group of automorphisms of V .

Thus for every s, t ∈ G, we have ρ(st) = ρ(s)ρ(t). Writing I for the identity map on V , this implies that

ρ(id) = I and ρ(s−1) = ρ(s)−1.

(Here and henceforth we write id for the group identity to avoid confusion with the natural exponent.)

Since the codomain is part of the de�nition of a function, we will often just speak of the representation ρ.

We call V the representation space and say that dρ = dim(V ) is the degree or dimension of ρ.

Also, we will occasionally �nd it convenient to employ the notation ρs := ρ(s).

When V ∼= Cn comes equipped with a basis {e1, . . . , en}, we can represent a ∈ GL(V ) by the n× n matrix

having jth column a(ej). In this view, a representation of G is a rule that associates an invertible matrix to

each group element in a manner that respects the underlying structure.

We won't be doing anything too fancy in this class, so we can generally just think of the representation space

as Cn with the standard basis and treat our representations as matrices.

Of course, the choice of basis is arbitrary, so let's say that representations (ρ, V ) and (ρ′, V ′) of G are

equivalent if there is a linear bijection τ : V → V ′ which satis�es

τ ◦ ρs = ρ′s ◦ τ for all s ∈ G.

Example 2.1. We always have the trivial representation ρ0(s) = 1 for all s ∈ G

When G = Sn, another one-dimensional representation is the sign representation ρ±(σ) = sgn(σ).

Example 2.2. Suppose thatW = span(w) is a one-dimensional subspace of Cd and let η0(s) = Id, the d×d
identity matrix, for all s ∈ G. The map τ :W → C de�ned by τ(cw) = c is a linear bijection satisfying

ρ0(s)τ(cw) = ρ0(s)c = c = τ(cw) = τ
(
η0(s)cw

)
,

so (η0,W ) is equivalent to (ρ0,C). Similarly, η±(σ) = sgn(σ)Id is equivalent to ρ±.

In general, ρ(s)v = v and ρ(σ)v = sgn(σ)v are valid representations for any vector space V . However, when

dim(V ) > 1, these are direct sums of trivial/sign representations; see below.

Example 2.3. If |G| = m, the left regular representation is (λ, V ) where V is an m-dimensional vector space

with basis {eg}g∈G and λ satis�es λ(g)eh = egh for all g, h ∈ G.

The right regular representation on V is given by ρ(g)eh = ehg−1 , and the map de�ned by τ(eg) = eg−1

shows that λ and ρ are equivalent.
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Example 2.4. If G = Sn, the permutation representation is de�ned by taking V to be a vector space with

basis {e1, . . . , en} and letting ρ : Sn → V be given by ρ(σ)ek = eσ(k).

This associates to each σ ∈ Sn the permutation matrix Rσ having (i, j)-entry 1
{
σ(j) = i

}
. For any x ∈ Cn,

Rσx has kth coordinate xσ−1(k).

More generally if φ : G ×X → X de�nes an action of a group G on a �nite set X and V is a vector space

with basis {ex}x∈X , the associated permutation representation (ρ, V ) is de�ned by ρ(g)ex = eφ(g,x).

The (left) regular representation is the special case X = G, φ(g, h) = gh.

If (ρ, V ) is a representation and W is a subspace of V which is stable under ρ (so ρ(s)w ∈ W for every

s ∈ G, w ∈W ), the restriction of ρ to W gives a subrepresentation. We always have the subrepresentations

corresponding toW = V andW = {0}. If ρ admits no other subrepresentations, we say that it is irreducible.

Now recall that V is said to be the direct sum of W1,W2 ≤ V (written V = W1 ⊕W2) if every v ∈ V can

be uniquely expressed as v = w1 +w2 with w1 ∈W1 and w2 ∈W2.

This is equivalent to requiring that W1 ∩W2 = {0} and dim(V ) = dim(W1) + dim(W2).

(We can also form the external direct sum of vector spaces U and V as the vector space consisting of ordered

pairs in U × V with all operations performed componentwise.)

The direct sum of representations (ρ1,W1) and (ρ2,W2) is the representation (ρ1 ⊕ ρ2,W1 ⊕W2) de�ned by

(ρ1 ⊕ ρ2)s(w1 +w2) = ρ1s(w1) + ρ2s(w2).

(For external direct sums, the analogous de�nition is (ρ1 ⊕ ρ2)s
(
w1,w2

)
=
(
ρ1s(w1), ρ

2
s(w2)

)
.)

By construction, ρ1 ⊕ ρ2 has degree dρ1⊕ρ2 = dρ1 + dρ2 .

The direct sum of more than two representations is de�ned by ρ1 ⊕ · · · ⊕ ρk+1 = (ρ1 ⊕ · · · ⊕ ρk)⊕ ρk+1.

If we think of ρ1(s), . . . , ρk(s) as matrices, then we can express the direct sum as the block diagonal matrix

ρ1 ⊕ · · · ⊕ ρk(s) =


ρ1(s) O

. . .

O ρk(s)

 .
Here we are assuming that a basis of

⊕k
i=1Wi is given by {e11, . . . , e1d1

, . . . , ek1 , . . . , e
k
dk
} with {ei1, . . . , eidi

}
the corresponding basis for Wi.

Example 2.5. Let G = S3 and W =
{
x ∈ C3 : x1 + x2 + x3 = 0

}
. A basis for W is given by w1 = e1 − e2

and w2 = e2 − e3 where e1, e2, e3 are the standard basis vectors in C3. W is stable under the permutation

representation (ρ,C3) since permuting the coordinates of a vector does not change their sum.

I claim that the standard representation (ρ,W ) is irreducible. Indeed every nontrivial subspace of W is of

the form W ′ = span(w) for some nonzero w = (x, y, z) in W .

Without loss of generality, assume that x ̸= 0 so that (1, y′, z′) ∈ W ′. If W ′ were stable under ρ, then we

would also have (y′, 1, z′) and thus (1− y′, y′ − 1, 0) in W ′.

If y′ ̸= 1, this implies that e1 − e2 and thus e2 − e3 are in W ′, hence W ′ =W .

If y′ = 1, we would have (1, 1,−2) ∈W ′ (as the coordinates must sum to 0), so (1,−2, 1) and thus (0, 3,−3)

are in W ′, which implies that e2 − e3 and thus e1 − e2 are in W ′.
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We can express ρ(π) in matrix form by computing

π ρ(π)w1 ρ(π)w2 ρ(π)

id (1,−1, 0) = w1 (0, 1,−1) = w2

[
1 0

0 1

]

(1 2) (−1, 1, 0) = −w1 (1, 0,−1) = w1 +w2

[
−1 1

0 1

]

(1 3) (0,−1, 1) = −w2 (−1, 1, 0) = −w1

[
0 −1

−1 0

]

(2 3) (1, 0,−1) = w1 +w2 (0,−1, 1) = −w2

[
1 0

1 −1

]

(1 2 3) (0, 1,−1) = w2 (−1, 0, 1) = −w1 −w2

[
0 −1

1 −1

]

(3 2 1) (−1, 0, 1) = −w1 −w2 (1,−1, 0) = w1

[
−1 1

−1 0

]

Observe that the orthogonal complement of W in C3 is W⊥ = span(1). This one-dimensional subspace

carries the trivial representation and we can form the direct sum ρ0 ⊕ ρ.

Relative to the basis B = {1,w1,w2}, this has matrix form

ρ0 ⊕ ρ
(
(1 3)

)
=

1 0 0

0 0 −1

0 −1 0

 , ρ0 ⊕ ρ
(
(3 2 1)

)
=

1 0 0

0 −1 1

0 −1 0

 , . . .
To express these in the standard basis E = {e1, e2, e3}, we must conjugate with the change of basis matrix

PE←B whose jth column is the standard coordinates of the jth vector in B.

This gives the equivalent matrix representations

(ρ0 ⊕ ρ)′
(
(1 3)

)
=

1 1 0

1 −1 1

1 0 −1


1 0 0

0 0 −1

0 −1 0


1 1 0

1 −1 1

1 0 −1


−1

=

0 0 1

0 1 0

1 0 0

 ,

(ρ0 ⊕ ρ)′
(
(3 2 1)

)
=

1 1 0

1 −1 1

1 0 −1


1 0 0

0 −1 1

0 −1 0


1 1 0

1 −1 1

1 0 −1


−1

=

0 1 0

0 0 1

1 0 0

 ,
...

which we recognize as the permutation representation!
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Our next order of business is to show that the irreducible representations are the building blocks of all others

in the sense that every representation is a direct sum of irreducible representations.

To this end, we record the following proposition.

Proposition 2.1. Let ρ : G→ GL(V ) be a representation and suppose that W ≤ V is stable under ρ. Then

there exists a complement W ′ ≤ V such that V =W ⊕W ′ and W ′ is stable under ρ.

Proof. Let ⟨·, ·⟩ be an inner product on V and de�ne a new inner product ⟨·, ·⟩ρ by

⟨x,y⟩ρ =
∑
s∈G

⟨ρ(s)x, ρ(s)y⟩ .

This is indeed conjugate-symmetric, linear in the �rst argument, and positive-de�nite since ⟨·, ·⟩ is an inner

product and ρ(s) is invertible. Moreover, it is invariant under ρ in the sense that

⟨ρ(t)x, ρ(t)y⟩ρ =
∑
s∈G

⟨ρ(s)ρ(t)x, ρ(s)ρ(t)y⟩ =
∑
s∈G

⟨ρ(st)x, ρ(st)y⟩

=
∑
u∈G

⟨ρ(u)x, ρ(u)y⟩ = ⟨x,y⟩ρ .

Let W ′ be the orthogonal complement of W with respect to this inner product. Then V =W ⊕W ′ and W ′

is stable under ρ because for any x ∈W ′, y ∈W , t ∈ G, we have z = ρ(t−1)y ∈W and thus

⟨ρ(t)x,y⟩ρ =
∑
s∈G

⟨ρ(s)ρ(t)x, ρ(s)y⟩ =
∑
s∈G

〈
ρ(st)x, ρ(st)ρ(t−1)y

〉
=
∑
u∈G

⟨ρ(u)x, ρ(u)z⟩ = ⟨x, z⟩ρ = 0. □

Remark 2.1. Note that the invariance of ⟨·, ·⟩ρ means that if {f1, . . . , fn} is an orthonormal basis of V with

respect to ⟨·, ·⟩ρ , then ⟨ρ(s)fi, ρ(s)fj⟩ρ = δij for all s ∈ G, i, j ∈ [n].

Also, if {e1, . . . , en} is an orthonormal basis of V with respect to ⟨·, ·⟩ and M is the linear transformation

de�ned by Mei = fi, then ⟨Mei,Mej⟩ρ = ⟨fi, fj⟩ρ = δij = ⟨ei, ej⟩, hence ⟨Mu,Mv⟩ρ = ⟨u,v⟩ by linearity.

It follows that the equivalent representation τ =M−1ρM satis�es

⟨τ(s)ei, τ(s)ej⟩ = ⟨Mτ(s)ei,Mτ(s)ej⟩ρ = ⟨ρ(s)Mei, ρ(s)Mej⟩ρ = ⟨ρ(s)fi, ρ(s)fj⟩ρ = δij

and thus is unitary with respect to ⟨·, ·⟩.

As such, we can always assume that our representations are unitary.

We are now able to prove the following extremely powerful result which enables us to study representations

by breaking them up into their irreducible components.

Theorem 2.1 (Maschke's Theorem). Every representation is a direct sum of irreducible representations.

Proof. If dρ = 1, then ρ is irreducible since V has no nontrivial subspaces. Now assume that the result

holds for all representations of degree at most k and let dρ = k + 1. If (ρ, V ) is irreducible, then we

are done. Otherwise, there is a stable subspace W < V and Proposition 2.1 gives V = W ⊕ W ′ with

dim(W ),dim(W ′) ≤ k. The induction hypothesis shows that W and W ′ are direct sums of irreps and the

result follows by the principle of induction. □
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The direct sum construction gives us a means of constructing new representations of G from old ones. The

other main way of doing this is by taking tensor products.

The tensor product of vector spaces U and V is the space U ⊗ V consisting of formal linear combinations of

symbols of the form u⊗ v (with u ∈ U , v ∈ V ) subject to the relations

(αu1 + βu2)⊗ v = αu1 ⊗ v + βu2 ⊗ v,

u⊗ (αw1 + βw2) = αu⊗w1 + βu⊗w2.

If {ei}i∈[m] and {fj}j∈[n] are bases for U and V , then a basis for U ⊗ V is given by {ei ⊗ fj}i∈[m],j∈[n].

The tensor product of representations (ρ, U) and (η, V ) is the representation (ρ ⊗ η, U ⊗ V ) de�ned by

(ρ⊗ η)s(u⊗ v) = ρs(u)⊗ ηs(v), having degree dρ⊗η = dρdη.

If ρ(s) and η(s) are in matrix form relative to {ei}i∈[m] and {fj}j∈[n], then relative to {ei ⊗ fj}i∈[m],j∈[n],

their tensor product has (block) matrix form

ρ⊗ η(s) =


ρ(s)1,1η(s) ρ(s)1,2η(s) · · · ρ(s)1,dρη(s)

ρ(s)2,1η(s) ρ(s)2,2η(s) · · · ρ(s)2,dρη(s)
...

. . .
...

ρ(s)dρ,1η(s) ρ(s)dρ,2η(s) · · · ρ(s)dρ,dρ
η(s)

 .
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3 Characters

Recall that if V is a vector space with basis {e1, . . . , en}, then a ∈ GL(V ) can be represented as the matrix

[ai,j ] having j
th column a(ej). This enables us to de�ne the trace of a as Tr(a) =

∑n
k=1 ak,k.

Some basic properties of the trace are established in the appendix. In particular, it is shown to be independent

of the choice of basis, so one can speak unambiguously of the trace of a �nite-dimensional representation.

We de�ne the character of a representation ρ : G→ GL(V ) as the function χρ : G→ C given by

χρ(s) = Tr
(
ρ(s)

)
.

If ρ is an irreducible representation, we call χρ an irreducible character. If dρ = 1, then χρ = ρ is called a

linear character.

Characters are extremely useful objects. One reason for this is that they retain a lot of information about

the associated representation even though they are scalar- rather than matrix-valued.

Example 3.1. If ρ is the n-dimensional permutation representation of Sn from Example 2.4, then

χρ(σ) =

n∑
k=1

ρ(σ)k,k =

n∑
k=1

1{σ(k) = k}

gives the number of �xed points of σ.

Example 3.2. If ρ and λ are representations of G, then the block matrix constructions of the direct sum

and tensor product show that χρ⊕λ(g) = χρ(g) + χλ(g) and χρ⊗λ(g) = χρ(g)χλ(g).

Proposition 3.1. If χ is the character of a representation ρ having degree d, then

(1) χ(id) = d

(2) χ(s−1) = χ(s)

(3) χ(sts−1) = χ(t)

Proof. The �rst assertion follows from the fact that ρ(id) = Id.

For the second, if o(s) = m, then ρ(s)m = ρ(sm) = ρ(id) = Id, hence the eigenvalues of ρ(s) must be m
th

roots of unity. (This is also a consequence of the fact that we can choose a basis in which our representations

are unitary.) It follows that

χ(s) = Tr
(
ρ(s)

)
=

d∑
k=1

λk =

d∑
k=1

λ−1k

= Tr
(
ρ(s)−1

)
= Tr

(
ρ(s−1)

)
= χ(s−1).

Finally since Tr(AB) = Tr(BA),

χ(sts−1) = Tr
(
ρ(sts−1)

)
= Tr

(
ρ(s)ρ(t)ρ(s)−1

)
= Tr

(
ρ(s)−1ρ(s)ρ(t)

)
= Tr

(
ρ(t)

)
= χ(t). □

Since the trace is preserved under cyclic shifts of the argument�e.g. Tr(ABC) = Tr(CAB)�we likewise

see that if ρ′ = τρτ−1, then Tr(ρ′) = Tr(ρ). That is, equivalent representations have identical characters.
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For our next results about characters, we need to establish the following surprisingly useful fact known as

Schur's Lemma.

Lemma 3.1. Let (ρ1, V1) and (ρ2, V2) be irreducible representations of G, and suppose that f : V1 → V2 is

a linear map that satis�es

f ◦ ρ1s = ρ2s ◦ f for all s ∈ G.

(1) If ρ1 and ρ2 are not equivalent, then f ≡ 0.

(2) If V1 = V2 and ρ1 = ρ2, then f is a scalar multiple of the identity.

Proof. Note that ker(f) =
{
v ∈ V1 : f(v) = 0} is stable under ρ1 since v ∈ ker(f) implies

f
(
ρ1s(v)

)
= ρ2s

(
f(v)

)
= ρ2s(0) = 0.

Similarly, Im(f) =
{
w ∈ V2 : w = f(v) for some v ∈ V1

}
is stable under ρ2 since w = f(v) implies that

ρ2s(w) = ρ2s
(
f(v)

)
= f

(
ρ1s(v)

)
.

Thus by irreducibility, ker(f) is either {0} or V1 and Im(f) is either {0} or V2.

It follows that if f ̸≡ 0, then ker(f) = {0} and Im(f) = V2, so f is a bijection and the representations are

equivalent.

Now suppose that V1 = V2 and ρ1 = ρ2. The claim certainly holds if f ≡ 0. Otherwise, f has a nonzero

eigenvalue λ. In this case, the map fλ = f − λI has a nontrivial kernel and satis�es fλ ◦ ρ1s = ρ2s ◦ fλ, hence
fλ ≡ 0. (Observe that it is important here that we are working over an algebraically closed �eld.) □

Corollary 3.1. Let (ρ1, V1) and (ρ2, V2) be irreducible representations of G, write d = dim(V1), and let

h : V1 → V2 be a linear map. De�ne

h̃ =
1

|G|
∑
s∈G

(ρ2s)
−1 ◦ h ◦ ρ1s. (3.1)

(1) If ρ1 and ρ2 are not equivalent, then h̃ ≡ 0.

(2) If V1 = V2 and ρ1 = ρ2, then h̃ = λI with λ = Tr(h)/d.

Proof. For any t ∈ G,

(ρ2t )
−1 ◦ h̃ ◦ ρ1t =

1

|G|
∑
s∈G

(ρ2t )
−1(ρ2s)

−1 ◦ h ◦ ρ1sρ1t

=
1

|G|
∑
s∈G

(ρ2st)
−1 ◦ h ◦ ρ1st = h̃,

hence h̃ ◦ ρ1t = ρ2t ◦ h̃.

If ρ1 and ρ2 are not equivalent, then Schur's lemma implies that h̃ ≡ 0.

If V1 = V2 and ρ1 = ρ2, Schur's lemma ensures that h̃ = λI, and taking the trace of both sides in Equation

(3.1) shows that λ = Tr(h)/d. □
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Let us now suppose that our representations are given in the matrix form ρ1s = [ri,j(s)], ρ
2
s = [qi,j(s)]. Writing

the linear maps from Corollary 3.1 as h = [xi,j ], h̃ = [x̃i,j ], Equation (3.1) can be expressed entrywise as

x̃i,ℓ =
1

|G|
∑
s,j,k

qi,j(s
−1)xj,krk,ℓ(s). (3.2)

In the �rst case, x̃ is the zero matrix for every choice of x�such as those with a single entry equal to 1 and

all others 0�so we must have
1

|G|
∑
s

qi,j(s
−1)rk,ℓ(s) = 0.

In the second case, x̃i,ℓ = λδiℓ with λ = 1
d

∑
j,k xj,kδjk. Substituting this into Equation (3.2) yields

1

d

∑
j,k

xj,kδjkδiℓ =
1

|G|
∑
s,j,k

ri,j(s
−1)xj,krk,ℓ(s).

As this holds for all choices of x, we can equate coe�cients to obtain

1

|G|
∑
s

ri,j(s
−1)rk,ℓ(s) =

1

d
δjkδiℓ.

Recalling that we can choose bases so that our representations are unitary and thus satisfy ri,j(s
−1) = rj,i(s)

(and employing the reindexing s 7→ s−1, k ↔ ℓ for the sake of aesthetics), we record the foregoing as

Corollary 3.2. Let (ρ1, V1) and (ρ2, V2) be irreducible representations of G having (unitary) matrix form

ρ1s = [ri,j(s)], ρ
2
s = [qi,j(s)], and write d = dim(V1). Then for all valid indices i, j, k, ℓ

(1) If ρ1 and ρ2 are not equivalent,
1

|G|
∑
s

qi,j(s)rk,ℓ(s) = 0.

(2) If V1 = V2 and ρ1 = ρ2,

1

|G|
∑
s

ri,j(s)rk,ℓ(s) =

 1
d , i = k and j = ℓ

0, otherwise
.

That is, the matrix entries of the irreducible representations are orthogonal with respect to the inner product

(f | g) = 1

|G|
∑
s∈G

f(s)g(s), f, g : G→ C.

One immediate consequence of this observation is that there are only �nitely many irreducible representations

of a �nite group G since dim
(
CG
)
= |G|.

Another is the �rst orthogonality relation given below.

Theorem 3.1. The irreducible characters are orthonormal with respect to (· | ·).

Proof. Let ρ be an irreducible representation of degree d with [ri,j(t)] = ρ(t) a unitary matrix. The associated

character is χρ(t) =
∑d

k=1 rk,k(t), and Corollary 3.2 implies

(χρ |χρ) =
1

|G|
∑
s∈G

χρ(s)χρ(s) =
1

|G|
∑
s∈G

d∑
k=1

rk,k(s)

d∑
ℓ=1

rℓ,ℓ(s) =
∑
k,ℓ

(rk,k | rℓ,ℓ) =
∑
k,ℓ

δkℓ/d = 1.
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Similarly, if η is an inequivalent irrep with [qi,j(t)] = η(t) a unitary matrix, then

(χρ |χη) =
∑
k,ℓ

(rk,k | qℓ,ℓ) = 0. □

We can now say a bit more about the direct sum decomposition from Theorem 2.1.

Proposition 3.2. Let (ρ, V ) be a representation of G, and suppose that V =W1⊕· · ·⊕Wk is a decomposition

of V into irreducible components. If (η,W ) is an irreducible representation of G, then the number of Wi

which are equivalent to W is (χρ |χη).

Proof. Since the character of a direct sum is the sum of the constituent characters (see Homework 4),

(χρ |χη) = (χ1 |χη) + · · ·+ (χk |χη)

with χi the character of Wi. The result follows since (χi |χη) is 1 if Wi
∼=W and 0 otherwise. □

An upshot of this result is that the multiplicity of W in V does not depend on the chosen decomposition.

Corollary 3.3. Representations with the same character are equivalent.

Proof. Both contain the same irreps with the same multiplicity. □

Corollary 3.4. For any representation (ρ, V ), (χρ |χρ) is a positive integer which equals 1 i� ρ is irreducible.

Proof. Let V = n1V1 ⊕ · · · ⊕ nmVm be a direct sum decomposition of V into irreducible components. Here

V1, . . . , Vm is a complete list of the irreps and ni ∈ N0 is the number of copies of Vi in V .

Writing χi for the character corresponding to Vi, we have

(χρ |χρ) =

(
m∑
i=1

niχi

∣∣∣∣ m∑
j=1

njχj

)
=
∑
i,j

ninj (χi |χj) =

m∑
i=1

n2i .

This is a positive integer that equals 1 if and only if some ni is 1 and the rest are 0. □

Example 3.3. If ρ is an irreducible representation of G and λ is a one-dimensional representation of G,

then λ⊗ ρ is irreducible because λ(g)λ(g) = 1 for all g, hence

(χλ⊗ρ |χλ⊗ρ) =
1

|G|
∑
g∈G

λ(g)χρ(g)λ(g)χρ(g) =
1

|G|
∑
g∈G

χρ(g)χρ(g) = 1.

Example 3.4. Let ρ be the n-dimensional permutation representation of Sn. Arguing as in Example 2.5,

the subspaces W =
{
x ∈ Cn : x1 + · · ·+ xn = 0

}
and W⊥ = span(1) are stable under ρ, so ρ is the direct

sum of the standard representation and the trivial representation. The latter is irreducible since it is one-

dimensional. If we are able to show that (χρ |χρ) = 2, then we can conclude that the standard representation

is irreducible as well.

To this end, let X =
∑n

i=1 1{σ(i) = i} be the random variable that records the number of �xed points in

a permutation σ drawn uniformly from Sn. We saw in Example 3.1 that χρ(σ) gives the number of �xed

points of σ. Since σ and σ−1 have the same number of �xed points,

(χρ |χρ) =
1

n!

∑
σ∈Sn

χρ(σ)χρ(σ
−1) = E

[
X2
]
.
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The desired result follows since X2 =
∑n

i=1 1
{
σ(i) = i

}
+
∑

i ̸=j 1
{
σ(i) = i, σ(j) = j

}
has expectation

E
[
X2
]
=

n∑
i=1

P {σ(i) = i}+
∑
i ̸=j

P {σ(i) = i, σ(j) = j}

= n
(n− 1)!

n!
+ n(n− 1)

(n− 2)!

n!
= 2.

It turns out to be quite instructive to play the same sort of game with the regular representation of an

arbitrary �nite group G.

Recall from Example 2.3 that this is the representation λ de�ned by λ(g)eh = egh for {es}s∈G a basis of the

representation space. It has degree dλ = |G| and matrix form ℓg,h(s) = 1{sh = g}.

Since sg = g i� s = id, the character of the regular representation is

χλ(s) =
∑
g∈G

ℓg,g(s) =

|G| , s = id

0, otherwise
.

Proposition 3.3. Every irreducible representation is contained in the regular representation with multiplicity

equal to its degree.

Proof. Let λ be the regular representation of G and let ρ be an irreducible representation. Then

(χλ |χρ) =
1

|G|
∑
s∈G

χλ(s)χρ(s
−1) =

1

|G|
χλ(id)χρ(id) =

1

|G|
|G| dρ = dρ. □

Corollary 3.5. Let ρ1, . . . , ρm be a complete list of the irreducible representations of G with ρk having

character χk and degree dk.

(1)
∑m

k=1 d
2
k = |G|

(2) For s ̸= id,
∑m

k=1 dkχk(s) = 0

Proof. Proposition 3.3 shows that the regular representation has character χ(s) =
∑m

k=1 dkχk(s).

Taking s = id gives (1), and taking s ̸= id gives (2). □

The preceding results give upper bounds on the degrees and number of irreducible representations of G, as

well as a criterion for checking that one has an exhaustive list of the irreps.

Also, since we know that the entries of the irreducible representations in unitary matrix form are orthogonal

with the entries of ρk having norm d−1k , the fact that there are
∑m

k=1 d
2
k = |G| of them gives

Proposition 3.4. Let [rki,j ] be the matrix form of the irreducible representation ρk with respect to a basis

that makes it unitary. Then an orthonormal basis for CG is given by
{√

dkr
k
i,j : k ∈ [m], i, j ∈ [dk]

}
.

Example 3.5. For the dihedral group Dn with n = 2m, there are 4 one-dimensional representations,

ψ1(r
k) = 1 = ψ1(r

ks),

ψ2(r
k) = 1 = −ψ2(r

ks),

ψ3(r
k) = (−1)k = ψ3(r

ks),

ψ4(r
k) = (−1)k = −ψ4(r

ks).
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The remaining are two-dimensional: Writing ω = e
2πi
n , we have for each 1 ≤ ℓ ≤ m− 1,

ρℓ(r
k) =

[
ωℓk 0

0 ω−ℓk

]
, ρℓ(r

ks) =

[
0 ω−ℓk

ωℓk 0

]
.

Indeed, the maps g 7→ ψj(g) and g 7→ ρℓ(g) are clearly homomorphisms, and the ρℓ are irreducible because

ρℓ(r
k) and ρℓ(r

ks) have no eigenvectors in common, so there is no stable one-dimensional subspace.

As 4 · 12 + (m− 1) · 22 = 2n, this accounts for all of them.

Observe that the characters of the two-dimensional irreps satisfy

χℓ(r
k) = χℓ(r

−k) = ωℓk + ω−ℓk = 2 cos

(
πℓk

m

)
,

χℓ(sr
k) = 0.
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4 The Fourier Transform

Given a �nite group G, we de�ne the convolution of f, g : G→ C by

(f ∗ g)(s) =
∑
t∈G

f(st−1)g(t).

(Like much in this section, the above de�nition generalizes from �nite to locally compact groups by replacing

summation with integration against Haar measure. For instance, when G is the real numbers under addition,

we get the familiar convolution operation (f ∗ g)(x) =
∫∞
−∞ f(x− y)g(y) dy.)

Repeated convolution is expressed in the exponential notation f∗1 = f and f∗k = f ∗ f∗(k−1).

Example 4.1. Convolution plays nicely with delta functions in the sense that

(δg ∗ δh)(s) =
∑
t∈G

δg(st
−1)δh(t) = δg(sh

−1) = δgh(s).

Note that if gh ̸= hg, then δg ∗ δh ̸= δh ∗ δg, so the convolution product is not commutative in general.

However, if G is abelian, then the change of variables u = t−1s gives

(f ∗ g)(s) =
∑
t∈G

f(st−1)g(t) =
∑
t∈G

f(t−1s)g(t) =
∑
u∈G

f(u)g(su−1) = (g ∗ f)(s).

Example 4.2. For any group G, the space CG of functions from G to C forms a ring under the operations

of pointwise addition and convolution.

The abelian group structure induced by the sum (f + g)(s) = f(s) + g(s) is clear�f ≡ 0 is the identity

and −g is the additive inverse of g�as is the distributivity of convolution over this pointwise addition, so it

remains only to check associativity of convolution and the existence of a multiplicative identity.

For the former, observe that for any f, g, h : G→ C, the change of variables r = tu gives(
(f ∗ g) ∗ h

)
(s) =

∑
u∈G

(f ∗ g)(su−1)h(u) =
∑
u∈G

∑
t∈G

f(su−1t−1)g(t)h(u)

=
∑
u∈G

∑
r∈G

f(sr−1)g(ru−1)h(u) =
∑
r∈G

f(sr−1)(g ∗ h)(r) =
(
f ∗ (g ∗ h)

)
(s).

For the latter, we compute

(f ∗ δid)(s) =
∑
t∈G

f(st−1)δid(t) = f(s),

(δid ∗ f)(s) =
∑
t∈G

δid(st
−1)f(t) = f(s).

(Alternatively, f =
∑

g∈G f(g)δg and, by Example 4.1, δid ∗ δg = δg ∗ δid...)

Now de�ne the Fourier transform of f : G→ C at the representation ρ as the dρ × dρ matrix

f̂(ρ) =
∑
s∈G

f(s)ρ(s).

This is a generalization of the discrete Fourier transform (G = Z/nZ) and, suitably interpreted, the standard
Fourier transform for functions on R. As such, it possesses many familiar properties.
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Proposition 4.1. The convolution of functions f, g : G→ C has Fourier transform

f̂ ∗ g(ρ) = f̂(ρ)ĝ(ρ).

Proof. Multiplying by ρ(t−1)ρ(t) and making the change of variables u = st−1 gives

f̂ ∗ g(ρ) =
∑
s∈G

(f ∗ g)(s)ρ(s) =
∑
s∈G

∑
t∈G

f(st−1)g(t)ρ(s)

=
∑
s∈G

∑
t∈G

f(st−1)g(t)ρ(st−1)ρ(t)

=
∑
u∈G

f(u)ρ(u)
∑
t∈G

g(t)ρ(t) = f̂(ρ)ĝ(ρ). □

The fact that Fourier transforms take convolutions to products is very useful in applications like probability

and signal processing. Our next result provides a sort of dictionary that enables one to more explicitly

capitalize on such observations.

The �rst part shows that a function is completely determined by its Fourier transforms at irreps and gives

a rule for recovering the function from its transforms.

The second can be thought of as relating `inner products' in the time and frequency domains.

Theorem 4.1. Let ρ1, . . . , ρm be the irreducible representations of G with d1, . . . , dm the corresponding

degrees. Then for any f, g : G→ C, we have

Fourier Inversion Formula:

f(s) =
1

|G|

m∑
i=1

diTr
(
ρi(s

−1)f̂(ρi)
)

Plancherel Formula: ∑
s∈G

f(s)g(s−1) =
1

|G|

m∑
i=1

diTr
(
f̂(ρi)ĝ(ρi)

)
Proof. Since both sides of the above equations are linear in f , it su�ces to prove the result for f(s) = δst,

in which case f̂(ρi) = ρi(t).

For the inversion formula, the right-hand side is then

1

|G|

m∑
i=1

diTr
(
ρi(s

−1)ρi(t)
)
=

1

|G|

m∑
i=1

diχi(s
−1t) = δst

by Corollary 3.5.

For the Plancherel formula, we must show that

g(t−1) =
1

|G|

m∑
i=1

diTr
(
ρi(t)ĝ(ρi)

)
,

and this follows immediately from the inversion formula. □

Next, we call f ∈ CG a class function if it's constant on conjugacy classes�that is, f(sts−1) = f(t) for all

s, t ∈ G�and we write C(G) for the set of class functions on G.
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Proposition 4.2. C(G) is the center of CG.

Proof. Since cl(id) = {id}, δid(sts−1) = δid(t) for all s, t ∈ G, hence C(G) contains the multiplicative identity.

Also, for any f, g ∈ C(G), s, t ∈ G,

f ∗ g(sts−1) =
∑
u

f(sts−1u−1)g(u) =
∑
u

f(sts−1(sus−1)−1)g(sus−1)

=
∑
u

f(stu−1s−1)g(sus−1) =
∑
u

f(tu−1)g(u) = f ∗ g(t).

As f, g ∈ C(G) clearly implies f − g ∈ C(G), we conclude that C(G) is a subring of CG.

Now suppose that f ∈ C(G), h ∈ CG, s ∈ G. Then the change of variables r = st−1 gives

h ∗ f(s) =
∑
t

h(st−1)f(t) =
∑
t

h(st−1)f(sts−1) =
∑
r

h(r)f(sr−1) = f ∗ h(s).

Conversely, if h ∈ CG satis�es f ∗ h = h ∗ f for all f ∈ CG, then for any s, t ∈ G,

h(ts) =
∑
u

h(tu−1)δs−1(u) = h ∗ δs−1(t) = δs−1 ∗ h(t) =
∑
u

δs−1(tu−1)h(u) = h(st),

hence h(sts−1) = h
(
(st)s−1

)
= h

(
s−1(st)

)
= h(t). □

Proposition 4.3. If f is a class function on G, then its Fourier transform at an irreducible representation

ρ is given by f̂(ρ) = λI with

λ =
1

dρ

∑
s∈G

f(s)χρ(s) =
|G|
dρ

(f |χρ) .

Proof. Observe that

ρ(s)f̂(ρ)ρ(s)−1 =
∑
t

f(t)ρ(s)ρ(t)ρ(s)−1 =
∑
t

f(t)ρ(sts−1)

=
∑
u

f(s−1us)ρ(u) =
∑
u

f(u)ρ(u) = f̂(ρ),

so Schur's lemma shows that f̂(ρ) = λI.

Taking traces of both sides gives dρλ = Tr
(∑

t

f(t)ρ(t)
)
=
∑
t

f(t)χρ(t). □

Example 4.3. A probability µ on a group G de�nes a Markov chain {Xk}∞k=0 that proceeds by sampling

independently from µ and left-multiplying, so that the transition function is

P (g, h) = P
{
Xk+1 = h

∣∣Xk = g
}
= µ(hg−1).

The distribution after k steps of the chain started at the identity is given by the k-fold convolution µ∗k,

which has Fourier transform µ̂∗k(ρi) = µ̂(ρi)
k by Proposition 4.1.

If µ is constant on the conjugacy classes of G (which happens in many natural examples), then Proposition

4.3 tells us that µ̂(ρi) = λiI and thus µ̂∗k(ρi) = λki I with λi =
∑

s∈G µ(s)
χi(s)
di

, the expectation of the

associated character ratio under µ.

Applying the inversion formula then yields

P
{
Xk = s

∣∣X0 = id
}
= µ∗k(s) =

1

|G|

m∑
i=1

diTr
(
ρi(s

−1)µ̂∗k(ρi)
)
=

1

|G|

m∑
i=1

diλ
k
i χi(s).
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Theorem 4.2. The irreducible characters form an orthonormal basis for the space of class functions.

Proof. The �rst orthogonality relation tells us that the irreducible characters are orthonormal with respect

to (· | ·), so it remains only to show that there are enough of them. In particular, the result will follow upon

demonstrating that any class function which is orthogonal to the conjugates of each irreducible character

must be identically 0.

Suppose that f is such a function. Then for any irrep ρi, Proposition 4.3 shows that f̂(ρi) = λiI with

λi = |G| d−1i (f |χi) = 0. Fourier inversion then implies that f ≡ 0. □

Corollary 4.1. The number of irreducible representations is equal to the number of conjugacy classes.

Proof. We know that the irreducible characters of G form a basis for C(G). Another basis is
{
1Ck

}r
k=1

where

C1, . . . , Cr are the distinct conjugacy classes of G. □

Corollary 4.2. The irreducible representations of a �nite abelian group are all one-dimensional.

Proof. The conjugacy classes of an abelian group G all have size one, so Corollary 4.1 implies that the

number of irreps is |G|. Since the sum of their squared degrees is also |G|, they must all have degree one. □

Another consequence of Theorem 4.2 is the second orthogonality relation.

Theorem 4.3. If χ1, . . . , χm are the irreducible characters of G, then for any s, t ∈ G,

1

|G|

m∑
i=1

χi(s)χi(t) =
1

|cl(s)|
1
{
t ∈ cl(s)

}
.

Proof. Set fs(t) = 1
{
t ∈ cl(s)

}
. Then fs is a class function, so Theorem 4.2 implies fs(t) =

∑m
i=1 αiχi(t)

where

αi = (fs |χi) =
1

|G|
∑
t

fs(t)χi(t) =
|cl(s)|
|G|

χi(s).

Taking conjugates of

1
{
t ∈ cl(s)

}
=

m∑
i=1

|cl(s)|
|G|

χi(s)χi(t)

and dividing by |cl(s)| yields the assertion. □
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5 Abelian Groups and Dimension

We have shown that the irreducible representations of a �nite abelian group all have degree one, but we can

actually be a little more speci�c.

Example 5.1. The irreps of G = Z/nZ are all of the form ω(k) = ωk as ω ranges over the nth roots of 1.

Indeed, for any m ∈ {0, 1, . . . , n− 1}, de�ne m : G→ C∗ by m(k) = e
2πim

n k. Then

m(j + k) = e
2πim

n (j+k) = e
2πim

n je
2πim

n k = m(j)m(k),

so (m,C) is a representation. It's irreducible because dm = 1.

Since we have produced one irrep for each of the n conjugacy classes of G, the list is exhaustive.

Observe that in this case, the Fourier transform and inversion formula are given by

f̂(m) =

n−1∑
k=0

f(k)e
2πim

n k, f(k) =
1

n

n−1∑
m=0

f̂(m)e−
2πim

n k.

As �nite abelian groups are products of cyclic groups, knowing how to compute representations of products

will tell us (in principle) all about their representation theory.

Recall that if G1 and G2 are groups, their direct product is the group G1 × G2 with multiplication

(s1, t1)(s2, t2) = (s1s2, t1t2).

Given representations (ρ1, V1) of G1 and (ρ2, V2) of G2, we can de�ne the representation (ρ1 ⊗ ρ2, V1 ⊗ V2)

of G1 ×G2 by

(ρ1 ⊗ ρ2)(s,t)(v1 ⊗ v2) = ρ1s(v1)⊗ ρ2t (v2).

The associated character is χρ1⊗ρ2

(
(s, t)

)
= χρ1(s)χρ2(t) and the degree is thus dρ1⊗ρ2 = dρ1dρ2 .

This follows by thinking about (ρ1⊗ρ2)(s,t) as a block diagonal matrix as we did when discussing the tensor

product of two representations of a single group.

(When G1 = G2 = G, the restriction of the representation ρ1 ⊗ ρ2 of G × G to the diagonal gives the

representation ρ1 ⊗ ρ2 of G.)

Proposition 5.1. If G1 and G2 are �nite groups, then every irreducible representation of G1 × G2 is

equivalent to some ρ1 ⊗ ρ2 with ρi ∈ Irr(Gi).

Proof. Let ρ1 and ρ2 be irreducible representations of G1 and G2, respectively. Then(
χρ1⊗ρ2 |χρ1⊗ρ2

)
=

1

|G1 ×G2|
∑

(s,t)∈G1×G2

χρ1⊗ρ2(s, t)χρ1⊗ρ2(s, t)

=
1

|G1| |G2|
∑
s∈G1

∑
t∈G2

χρ1(s)χρ2(t)χρ1(s)χρ2(t)

=
1

|G1|
∑
s∈G1

χρ1(s)χρ1(s) · 1

|G2|
∑
t∈G2

χρ2(t)χρ2(t)

=
(
χρ1 |χρ1

) (
χρ2 |χρ2

)
= 1 · 1 = 1,

hence ρ1 ⊗ ρ2 is irreducible by Corollary 3.4.
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If η1 ∈ Irr(G1) is not equivalent to ρ
1 or η2 ∈ Irr(G2) is not equivalent to ρ

2, an analogous computation

gives
(
χρ1⊗ρ2 |χη1⊗η2

)
=
(
χρ1 |χη1

) (
χρ2 |χη2

)
= 0, so this construction produces distinct irreps.

To see that all have been accounted for, observe that

m1∑
i=1

m2∑
j=1

d2ρi⊗ρj
=

m1∑
i=1

m2∑
j=1

d2i d
2
j =

m1∑
i=1

d2i

m2∑
j=1

d2j = |G1| |G2| = |G1 ×G2| . □

Taken together, Example 5.1 and Proposition 5.1 also imply Corollary 4.2, but it is still quite remarkable

that partial knowledge of the number and dimensions of the irreducible representations can lead so easily to

such a sweeping result. Thus inspired, we now set out to establish a few more facts of this nature.

We have de�ned the commutator of g, h ∈ G as [g, h] = ghg−1h−1, which equals the identity if and only if g

and h commute.

The commutator subgroup (or derived subgroup) G′ = [G,G] is de�ned to be the subgroup generated by the

commutators, G′ =
〈
[g, h] : g, h ∈ G

〉
.

For any K ≤ G, if G′ ⊆ K, then for all x ∈ G, k ∈ K, xkx−1 = xkx−1k−1k = [x, k]k ∈ K, so K ◁ G.

Moreover, for any x, y ∈ G, (xK)(yK) = xyK = yxx−1y−1xyK = yx[x−1, y−1]K = yxK = (yK)(xK), so

G/K is abelian.

In particular, G′ ◁ G and G/G′ is abelian.

In fact, if N ◁ G is such that G/N is abelian, then for all x, y ∈ G, xyN = (xN)(yN) = (yN)(xN) = yxN ,

so xyx−1y−1 ∈ N . As x and y were arbitrary, we conclude that G′ ⊆ N . The commutator subgroup is thus

the smallest normal subgroup whose quotient is abelian, so we can think of G′ as a measure of abelianity:

the larger the commutator, the less abelian the group.

Theorem 5.1. The number of one-dimensional representations of a �nite group G is [G : G′] = |G| / |G′|.

Proof. Let π : G → G/G′ be the natural map π(x) = xG′. We will show that ψ 7→ ψ ◦ π de�nes a

bijection from the irreducible representations of G/G′ to the one-dimensional representations of G. (Since

G/G′ is abelian, its irreps are all one-dimensional, and of course, one-dimensional representations are always

irreducible.)

On one hand, if ψ : G/G′ → C∗ is a homomorphism, then ψ◦π : G→ C∗ is a composition of homomorphisms

and thus is a homomorphism, so it de�nes a one-dimensional representation of G.

On the other, if ρ : G → C∗ is a homomorphism, then ker(ρ) ◁ G and Im(ρ) ∼= G/ ker(ρ) is a subgroup

of C∗ and thus abelian. It follows that G′ ⊆ ker(ρ). De�ne ψ : G/G′ → C∗ by ψ(xG′) = ρ(x). This

is coherent because if xG′ = yG′, then x−1y ∈ G′ ⊆ ker(ρ), hence ρ(y) = ρ(x)ρ(x−1y) = ρ(x). Also,

ψ(xG′zG′) = ψ(xzG′) = ρ(xz) = ρ(x)ρ(z) = ρ(xG′)ρ(zG′), so ψ is a homomorphism. By construction

ρ = ψ ◦ π. □

Our next order of business is to prove that the degrees of the irreps divide the order of the group.

We begin by recalling that z ∈ C is said to be an algebraic integer if it is the root of a monic polynomial with

integer coe�cients, and we write A for the set of algebraic integers. By the rational roots test, A ∩Q = Z.
This gives us a sneaky means of establishing divisibility: If d, n ∈ Z with n/d ∈ A, then d |n.
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Observe that characters are traces of unitary matrices and thus sums of roots of unity. Since an nth root

of one solves xn − 1 = 0 and Proposition 7.2 ensures that A is closed under addition, we see that if χ is a

character of a �nite group G, then χ(g) is an algebraic integer for each g ∈ G. (Alternatively, if χ is the

character of a degree d representation and o(g) = m, then χ(g)m − d = χ(gm)− χ(id) = 0.)

Lemma 5.1. Let ρ be an irreducible representation of a �nite group G having degree d and character χ.

Then for any g ∈ G,
|cl(g)|χ(g)

d
∈ A.

Proof. Let C1, . . . , Cr be the distinct conjugacy classes of G, write hi = |Ci|, and let χi denote the value of

χ on Ci. We wish to show that hiχi/d is an algebraic integer for each i.

Setting Ti =
∑

x∈Ci
ρ(x), we see that for any g ∈ G, ρ(g)Tiρ(g)

−1 =
∑

x∈Ci
ρ(gxg−1) =

∑
y∈Ci

ρ(y) = Ti.

Schur's lemma thus implies that Ti = λiId, and taking traces shows that dλi =
∑

x∈Ci
Tr
(
ρ(x)

)
= hiχi.

Also, TiTj =
∑

x∈Ci

∑
y∈Cj

ρ(xy) =
∑

g∈G |Sij(g)| ρ(g) where Sij(g) :=
{
(x, y) ∈ Ci × Cj : xy = g

}
.

Now if g′ = aga−1 for some a ∈ G, then the map φ : Sij(g) → Sij(g
′) de�ned by φ

(
(x, y)

)
= (axa−1, aya−1)

is clearly a bijection, so we can set aijk := |Sij(g)| where g is any element of Ck to get

TiTj =
∑
g∈G

|Sij(g)| ρ(g) =
r∑

k=1

∑
g∈Ck

aijkρ(g) =

r∑
k=1

aijkTk.

Substituting Tk = (hkχk/d)Id into this expression and examining the (1, 1)-entry gives (hiχi/d)(hjχj/d) =∑r
k=1 aijk(hkχk/d), so Lemma 7.8 tells us that hiχi/d ∈ A as desired. □

With the preceding in hand, we can now prove our main result.

Theorem 5.2. If ρ is a d-dimensional irreducible representation of G, then d
∣∣ |G|.

Proof. Let χ denote the character of ρ and keep the notation of Lemma 5.1.

The �rst orthogonality relation gives 1 = (χ |χ) = 1
|G|
∑

s∈G χ(s)χ(s), so

|G|
d

=
∑
s∈G

χ(s)

d
χ(s) =

r∑
i=1

∑
s∈Ci

χ(s)

d
χ(s) =

r∑
i=1

hiχi

d
· χi.

Since hiχi/d and χi are algebraic integers and A is closed under conjugates, products, and sums, we have

that |G| /d is a rational algebraic integer and the claim follows. □

Remark 5.1. Theorem 5.2 can actually be strengthened to show that the dimension of any irrep divides the

index of the center, [G : Z(G)].

Example 5.2. We have seen that if p is prime and |G| = p2, then G is abelian.

Another proof proceeds by noting that if ρ ∈ Irr(G) has dimension d, then d
∣∣ p2, so d ∈ {1, p, p2}. Since

p2 =
∑

ρ∈Irr(G) d
2
ρ = 1+

∑
ρ∈Irr(G)\{ρ0} d

2
ρ, we cannot have any representation of degree p or p2, so all irreps

are one-dimensional and G is abelian.
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Similarly, if p and q are primes with p < q and q ̸≡ 1(mod p), then any group G of order pq must be abelian:

If d1, . . . , ds are the degrees of the irreps, then we must have pq = d21 + · · · + d2s and dk
∣∣ pq for each k. As

p < q, this means that dk ∈ {1, p} for all k.

Writing m and n for the number of degree 1 and p irreps, respectively, we have pq = m + np2. Since

m = pq−np2 is divisible by p, m | |G| by Theorem 5.1, m ≥ 1 because of the trivial representation, we must

have m = p or m = pq. But m = p gives pq = p(1 + np) implies q ≡ 1(mod p). It follows that the number of

one-dimensional irreps is pq, hence G is abelian.

Yet another famous example of this general line of reasoning is Burnside's Theorem that if p and q are primes

and a, b ∈ N0, then any group of order paqb is solvable, but this requires a bit more preparatory work than

we have time for right now.
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6 Restriction and Induction

If ψ : G → K is a homomorphism and ρ : K → GL(V ) is a representation, then ρ ◦ ψ : G → GL(V ) is a

composition of homomorphisms and thus a homomorphism. When ψ is surjective and ρ is irreducible, this

representation of G is irreducible: If W ≤ V is stable under ρ ◦ ψ, then for any y ∈ K, there is an x ∈ G

with y = ψ(x) and thus ρ(y)W = ρ
(
ψ(x)

)
W ⊆W, so W is stable under ρ as well.

An important example is K = G/N for some N ◁ G with ψ : G → G/N the natural map. In fact, this is

how we got the one-dimensional irreps of G from those of its abelianization G/G′.

In addition to this lifting of representations, we can sometimes descend from the group to a suitable quotient.

If ρ : G→ GL(V ) is a representation of a �nite group G with kernel containing N ◁ G, then ρ′(gN) = ρ(g)

de�nes a representation of G/N . (N ⊆ ker(ρ) ensures that gN = hN implies ρ(g) = ρ(h), so the map

ρ′ : G/N → GL(V ) is well-de�ned.) Its character satis�es

⟨χ′, χ′⟩G/N =
1

|G/N |
∑

xN∈G/N

χ′(xN)χ′(xN) =
|N |
|G|

∑
xN∈G/N

χ(x)χ(x)

=
1

|G|
∑

xN∈G/N

∑
y∈xN

χ(y)χ(y) =
1

|G|
∑
y∈G

χ(y)χ(y) = ⟨χ, χ⟩G ,

hence ρ′ is irreducible precisely when ρ is.

(In this section, we write ⟨·, ·⟩G in place of (· | ·) to enhance readability and emphasize the underlying group.)

A kindred question is the how the representations of a group G relate to those of a subgroup H ≤ G.

Certainly, if ρ : G → GL(V ) is a representation of G, then the restriction ρH : H → GL(V ), de�ned by

ρH(x) = ρ(x) for all x ∈ H, is a representation of H. However, irreducibility of ρ does not necessarily entail

irreducibility of ρH . For instance, if H abelian and G is not, then G has a representation of degree greater

than one whose restriction to H cannot be irreducible. (Of course, if ρ is not irreducible, then ρH is not

either since a subspace W ≤ V that is stable under ρ will also be stable under ρH .)

Example 6.1. LetG be a �nite group andA ≤ G an abelian subgroup. Then every irreducible representation

of G has degree at most |G| / |A|.

Indeed, suppose that ρ : G → GL(V ) is irreducible and let ρA be its restriction to A. Let W ≤ V be an

irreducible subrepresentation so that dim(W ) = 1 by Corollary 4.2. De�ne V ′ ≤ V to be the vector subspace

generated by ρ(s)W as s ranges over G. By construction, V ′ is stable under ρ, so irreducibility implies

V ′ = V . Also, for any g ∈ G, a ∈ A, we have ρ(ga)W = ρ(g)ρ(a)W = ρ(g)W . It follows that the number of

distinct ρ(g)W , and thus the dimension of V , is at most [G : A].

To better understand these issues, it helps to start by thinking about class functions:

Given a �nite group G and a subgroup H ≤ G, de�ne the restriction map ResGH : C(G) → C(H) by

ResGHφ(h) = φ(h) for φ ∈ C(G), h ∈ H .

For ψ ∈ C(H), let ψ̃ : G→ C be its `extension by zero,' ψ̃(g) = ψ(g)1{g ∈ H}, and de�ne the induction map

IndGH : C(H) → C(G) by IndGHψ(g) =
1

|H|
∑
x∈G

ψ̃(x−1gx).

Proposition 7.3 in the appendix shows that these maps are well-de�ned and linear. Our next result, known

as Frobenius reciprocity, shows they are adjoint.
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Theorem 6.1. Suppose H ≤ G, ψ ∈ C(H), and φ ∈ C(G). Then〈
ψ,ResGHφ

〉
H

=
〈
IndGHψ,φ

〉
G
.

Proof. We compute 〈
IndGHψ,φ

〉
G
=

1

|G|
∑
g∈G

IndGHψ(g)φ(g)

=
1

|G|
∑
g∈G

1

|H|
∑
x∈G

ψ̃(x−1gx)φ(g)

=
1

|G|
1

|H|
∑
x∈G

∑
g∈G

ψ̃(x−1gx)φ(g)

=
1

|G|
1

|H|
∑
x∈G

∑
y∈G

ψ̃(y)φ(xyx−1)

=
1

|G|
1

|H|
∑
x∈G

∑
h∈H

ψ(h)φ(xhx−1)

=
1

|H|
∑
h∈H

ψ(h)
1

|G|
∑
x∈G

φ(h)

=
1

|H|
∑
h∈H

ψ(h)φ(h) =
〈
ψ,ResGHφ

〉
H
. □

Proposition 6.1. If x1, . . . , xr is a transversal of H in G, then IndGHψ(g) =

r∑
i=1

ψ̃(x−1i gxi).

Proof. If h ∈ H, then h−1gh ∈ H i� g ∈ H, so if ψ ∈ C(H) then ψ̃(h−1gh) = ψ̃(g). Accordingly, we have

IndGHψ(g) =
1

|H|
∑
x∈G

ψ̃(x−1gx) =
1

|H|

r∑
i=1

∑
h∈H

ψ̃
(
(xih)

−1g(xih)
)

=

r∑
i=1

1

|H|
∑
h∈H

ψ̃
(
x−1i gxi

)
=

r∑
i=1

ψ̃
(
x−1i gxi

)
. □

Example 6.2. Suppose K ≤ H ≤ G and let φ ∈ C(G). It is easy to see that ResHKRes
G
Hφ = ResGKφ.

More interestingly, induction is also transitive. Indeed, if ψ ∈ C(K), then

IndGHInd
H
Kψ(g) =

1

|H|
∑
y∈G

IndHKψ(y
−1gy)1{y−1gy ∈ H}

=
1

|H|
∑
y∈G

1

|K|
∑
x∈H

ψ(x−1y−1gyx)1{x−1y−1gyx ∈ K}1{y−1gy ∈ H}

=
1

|K|
∑
x∈H

1

|H|
∑
y∈G

ψ(x−1y−1gyx)1{x−1y−1gyx ∈ K, y−1gy ∈ H}

=
1

|K|
∑
x∈H

1

|H|
∑
z∈G

ψ(z−1gz)1{z−1gz ∈ K, xz−1gzx−1 ∈ H}

=
1

|K|
∑
x∈H

1

|H|
∑
z∈G

ψ(z−1gz)1{z−1gz ∈ K}

=
1

|K|
∑
z∈G

ψ(z−1gz)1{z−1gz ∈ K} = IndGKψ(g).
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Now if ρ is a representation of G with character χρ, then the restriction of ρ to H ≤ G has character

χρH
(h) = Tr

(
ρH(h)

)
= Tr

(
ρ(h)

)
= χρ(h).

In other words, if we denote the restriction of ρ to H by ResGHρ, then χResGHρ = ResGHχρ.

Our next goal is to show that the induction map likewise sends characters to characters, so given a repre-

sentation η of H, we can de�ne IndGHη to be the representation of G having character IndGHχη.

Frobenius reciprocity then tells us that if ρ is an irreducible representation of G and η is an irreducible

representation of H, the multiplicity of η in ResGHρ is equal to the multiplicity of ρ in IndGHη.

Example 6.3. Let χ0 be the trivial character on the trivial subgroup {id} ≤ G. Since x−1gx = id i� g = id,

we see that

IndG{id}χ0(g) =
∑
x∈G

χ̃0(x
−1gx) =

|G| , g = id

0, g ̸= id

is the character of the regular representation.

More generally, let H ≤ G and consider the coset action of G on G/H, g(xH) = gxH.

The set of points �xed by g ∈ G is Fix(g) =
{
xH : x−1gx ∈ H

}
. Since each coset has |H| elements,

|Fix(g)| = 1
|H|
∣∣{x ∈ G : x−1gx ∈ H

}∣∣.
Thus if χ0 is the trivial character on H, then χ̃0(x

−1gx) = 1
{
x−1gx ∈ H

}
, so

IndGHχ0(g) =
1

|H|
∑
x∈G

χ̃0(x
−1gx) = |Fix(g)| ,

the character of the permutation representation associated with the coset action.

(Recall that if G acts on X, then the permutation representation is (ρ, V ) where V has basis {ex}x∈X and ρ

is de�ned by ρ(g)ex = egx. Its character is thus χ(g) =
∑

x∈X ⟨ρ(g)ex, ex⟩ =
∑

x∈X 1
{
gx = x

}
= |Fix(g)|.)

The de�nition of the induction map as an average over conjugates is quite natural (especially in light of

Theorem 6.1) and suggests something about the general form an induced representation should take. We

will elaborate on the intuition soon, but �rst we provide a `reasonable' construction and check that it works:

Given η : H → GLd(C), let η̃(g) = η(g)1{g ∈ H}, let t1, . . . , tr be a transversal of H in G, and de�ne

IndGHη(g) to be the rd× rd block matrix with (i, j)-block η̃(t−1i gtj) for i, j ∈ [r].

Note that if sk ∈ tkhk with hk ∈ H, then η̃(s−1i gsj) = η̃(h−1i t−1i gtjhj) = η(hi)
−1η̃(t−1i gxtj)η(hj), so

changing the coset representatives just amounts to conjugating by a block-diagonal matrix of the form

diag
(
η(h1), . . . , η(hr)

)
.

Theorem 6.2. Suppose H is a subgroup of G of index r and η : H → GLd(C) is a representation of H.

Then IndGHη : G→ GLrd(C) is a representation of G with character χIndG
Hη = IndGHχη.

Proof. Let t1, . . . , tr be a transversal of H in G, and for ease of notation, write ηGx = IndGHη(x) for the rd×rd
block diagonal matrix with (i, j)-block [ηGx ]ij = η̃(t−1i xtj).

For any x, y ∈ G, i, j ∈ [r], ηGx η
G
y has (i, j)-block

[ηGx η
G
y ]ij =

r∑
k=1

[ηGx ]ik[η
G
y ]kj =

r∑
k=1

η̃(t−1i xtk)η̃(t
−1
k ytj).
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In order for η̃(t−1k ytj) to not be the zero matrix, we must have t−1k ytj ∈ H or ytj ∈ tkH. Let tℓ be the

unique representative of the coset containing ytj so that [ηGx η
G
y ]ij = η̃(t−1i xtℓ)η(t

−1
ℓ ytj). This is nonzero

precisely when t−1i xtℓ ∈ H or tiH = xtℓH = xytjH, which in turn is equivalent to t−1i xytj ∈ H. In this

case, η̃(t−1i xtℓ)η(t
−1
ℓ ytj) = η(t−1i xtℓ)η(t

−1
ℓ ytj) = η(t−1i xytj).

We have thus shown that [ηGx η
G
y ]ij = [ηGxy]ij , so η

G : G → GLrd(C) is indeed a homomorphism. Appealing

to Proposition 6.1, its character is

χηG(g) = Tr
(
ηGg
)
=

r∑
i=1

Tr
(
η̃(t−1i gti)

)
=

r∑
i=1

χ̃η(t
−1
i gti) = IndGHχη(g). □

The idea is that we start with a representation (η,W ) of H, let V be a direct sum of [G : H] copies of W ,

and let G act on V by (1) permuting the summands according to the coset action and (2) acting within each

summand according to η.

Speci�cally, let t1, . . . , tr be a transversal of H in G and set V =
⊕r

k=1 tkW with tkW ∼=W for k = 1, . . . , r.

For each g ∈ G, k ∈ [r], there are unique k(g) ∈ [r], hg,k ∈ H with gtk = tk(g)hg,k. Given v =
∑r

k=1 tkwk,

we de�ne ρ(g)v =
∑r

k=1 tk(g)η(hg,k)wk. (Be aware that the tk are not acting as scalars, they are keeping

track of the `coordinates.')

By taking natural bases for W ∼= Cd, V ∼= Crd, we see that our matrix representation must satisfy

ρ(g)(w1, . . . ,wr)
T = (v1, . . . ,vr)

T where vi = η(h)wj with gtj = tih. That is, ρ(g) is the block matrix

having (i, j)-block η̃(t−1i gtj).

Example 6.4. The quaternion group is de�ned as Q8 = {±1,±ı̂,±ȷ̂,±k̂} with ı̂2 = ȷ̂2 = k̂2 = ı̂ȷ̂k̂ = −1.

These relations imply −1 is central and ı̂, ȷ̂, k̂ multiply cyclically like cross-products of unit vectors in R3.

One can check by hand that Q8 has commutator subgroup Q′8 = {±1}, so there are 4 = [Q8 : Q′8] one-

dimensional irreps by Theorem 5.1. (Speci�cally, there's the trivial representation ρ0, and the representations

ρx, x = ı̂, ȷ̂, k̂, that map elements of ⟨x⟩ to 1 and the rest to −1.)

Since the sum of the squared degrees is 8, the remaining irrep is two-dimensional, and it turns out that we

can compute it by induction: Set H = ⟨̂ı⟩ and consider the representation ρ(̂ık) = ik. (The dotted i is the

imaginary unit and the hatted ı̂ is the group element.) A transversal of H in Q8 is {1, ȷ̂}, so our formula

gives IndGHρ(x) =

[
ρ̃(x) ρ̃(xȷ̂)

ρ̃(−ȷ̂x) ρ̃(−ȷ̂xȷ̂)

]
, which works out to

IndGHρ(±1) = ±

[
1 0

0 1

]
, IndGHρ(±ı̂) = ±

[
i 0

0 −i

]

IndGHρ(±ȷ̂) = ±

[
0 −1

1 0

]
, IndGHρ(±k̂) = ±

[
0 −i
−i 0

]
.

Since IndGHρ(̂ı) and IndGHρ(k̂) have no eigenvectors in common, this representation is indeed irreducible.

Example 6.4 shows that irreps sometimes induce to irreps, while Example 6.3 shows they sometimes do not.

Given a representation η of H ≤ G, Corollary 3.4 and Theorem 6.1 imply IndGHη ∈ Irr(G) if and only if

1 =
〈
χIndG

Hη, χIndG
Hη

〉
G
=
〈
IndGHχη, Ind

G
Hχη

〉
G
=
〈
χη,Res

G
HInd

G
Hχη

〉
H
.
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If η = η1 ⊕ η2, then Frobenius reciprocity or linearity of the induction map gives
〈
χIndG

Hη, χIndG
Hη

〉
G

≥〈
χIndG

Hη1
, χIndG

Hη1

〉
G
+
〈
χIndG

Hη2
, χIndG

Hη2

〉
G
≥ 2, so IndGHη is reducible as well.

As such, we just need to understand ResGHInd
G
Hχη for η ∈ Irr(H).

It turns out that it's about as easy to consider the slightly more general case of ResGHInd
G
Kχη for H,K ≤ G

and η any representation of H. A key notion in this analysis is that of a double coset:

Given H,K ≤ G, let H ×K act on G by (h, k)g = hgk−1. The orbit of g under this action is the double

coset HgK =
{
hgk : h ∈ H, k ∈ K

}
, and we write H\G/K for the set of double cosets of H and K in G.

Theorem 6.3 (Mackey Decomposition). Let H,K ≤ G and let S be a complete set of double coset repre-

sentatives for H\G/K. Then for any ψ ∈ C(K),

ResGHInd
G
Kψ =

∑
s∈S

IndHH∩KsResK
s

H∩Ksψs

where Ks = sKs−1 and ψs ∈ C(Ks) is given by ψs(x) = ψ(s−1xs).

Proof. We begin by determining a suitable transversal of K in G.

First, for each s ∈ S, choose a transversal Vs of H ∩Ks in H, so that H =
⊔

v∈Vs
v(H ∩Ks). One readily

checks that (H ∩Ks)sK = sK, so we have

HsK =
⋃

v∈Vs

v(H ∩Ks)sK =
⋃

v∈Vs

vsK.

This union is disjoint since vsK = v′sK for some v, v′ ∈ Vs implies s−1v−1v′s ∈ K and thus v−1v′ ∈ Ks.

Because v, v′ ∈ H as well, we have v−1v′ ∈ H ∩Ks or v′ ∈ v(H ∩Ks), hence v = v′ by de�nition of Vs.

Accordingly, writing Ts =
{
vs : v ∈ Vs

}
for each s ∈ S and setting T =

⋃
s∈S Ts, we see that

G =
⊔
s∈S

HsK =
⊔
s∈S

⊔
v∈Vs

vsK =
⊔
s∈S

⊔
t∈Ts

tK =
⊔
t∈T

tK,

hence T is a transversal of K in G.

Two applications of Proposition 6.1 now show that for each h ∈ H,

IndGKψ(h) =
∑
t∈T

ψ̃(t−1ht)

=
∑
s∈S

∑
t∈Ts

ψ̃(t−1ht)

=
∑
s∈S

∑
v∈Vs

ψ̃(s−1v−1hvs)

=
∑
s∈S

∑
v∈Vs

ψs(v−1hv)1{v−1hv ∈ Ks}

=
∑
s∈S

∑
v∈Vs

ResKs

H∩Ks
ψs(v−1hv)1{v−1hv ∈ H ∩Ks}

=
∑
s∈S

IndHH∩KsResK
s

H∩Ksψs(h). □
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We say that representations η and λ of G are disjoint if they have no equivalent (nonzero) subrepresentations.

If we denote the irreps of G by ρ1, . . . , ρr, then we have the direct sum decompositions η = m1ρ1⊕· · ·⊕mrρr

and λ = n1ρ1 ⊕ · · · ⊕ nrρr where mk, nk ∈ N0 and the isotypic component mkρk is the direct sum of mk

copies of ρk. Disjointness means that there is no k ∈ [r] with mk, nk > 0 and thus

⟨χη, χλ⟩ =

〈
r∑

i=1

miχρi ,

r∑
j=1

njχρj

〉
=

r∑
i=1

r∑
j=1

minj
〈
χρi , χρj

〉
=

r∑
i=1

mini = 0.

That is, representations are disjoint precisely when their characters are orthogonal.

Theorem 6.4 (Mackey's Irreducibility Criterion). Let H be a subgroup of G and η a representation of H.

For s ∈ G, set Hs = sHs−1 and let ηs be the representation of Hs de�ned by ηs(x) = η(s−1xs).

Then IndGHη is an irreducible representation of G if and only if η is irreducible and the representations

ResHH∩Hsη and ResH
s

H∩Hsηs are disjoint for every s /∈ H.

Proof. Let S be a set of representatives for H\G/H. Since any s /∈ H may be chosen as the representative

of its double coset, it will su�ce to show that ResHH∩Hsη and ResH
s

H∩Hsηs are disjoint for each s ∈ S \H.

Write χ and χs for the characters of η and ηs, respectively. For the sole element h of S ∩ H, we have

Hh ∩H = H and ηh = η, so Theorem 6.3 gives

ResGHInd
G
Hχ =

∑
s∈S

IndHH∩HsResH
s

H∩Hsχs = χ+
∑

s∈S\H

IndHH∩HsResH
s

H∩Hsχs.

Applying Frobenius reciprocity twice, we �nd that〈
IndGHχ, Ind

G
Hχ
〉
G
=
〈
χ,ResGHInd

G
Hχ
〉
H

= ⟨χ, χ⟩H +
∑

s∈S\H

〈
χ, IndHH∩HsResH

s

H∩Hsχs
〉
H

= ⟨χ, χ⟩H +
∑

s∈S\H

〈
ResHH∩Hsχ,ResH

s

H∩Hsχs
〉
H∩Hs

.

Note that the �nal equality made use of the fact that inner products of characters take values in N0 ⊆ R.

Since ⟨χ, χ⟩H ≥ 1 with equality i� η ∈ Irr(G) and
〈
ResHH∩Hsχ,ResH

s

H∩Hsχs
〉
H∩Hs

≥ 0 with equality i�

ResHH∩Hsχ and ResH
s

H∩Hsχs are disjoint, the theorem has been proved. □

Corollary 6.1. Let η be a representation of H ◁ G and S a transversal of H in G. Then IndGHη ∈ Irr(G)

if and only if η ∈ Irr(H) and for each s ∈ S \H, η and ηs are inequivalent.

Proof. As before, we only need to check disjointness for a set of double coset representatives, and H ◁ G

implies HxH = xHH = xH, hence H\G/H = G/H. Moreover, Hs = sHs−1 = H and

⟨χ, χ⟩H =
∑
h∈H

χ(h)χ(h) =
∑
h∈H

χ(s−1hs)χ(s−1hs) = ⟨χs, χs⟩H ,

hence η is irreducible if and only if ηs is. (The third equality is a reindexing of H, not a statement about

characters being invariant under conjugation; χ ∈ C(H) and s /∈ H.) The assertion now follows from

Theorem 6.4 since irreps are disjoint precisely when they're inequivalent. □
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We conclude with a description of the Mackey machine, which allows one to construct the irreps of the

semidirect product of a subgroup by an abelian normal subgroup from those of the constituent subgroups.

Speci�cally, suppose A ◁ G is abelian and H is a complement of A in G.

The irreps of A are all one-dimensional and form a group, Â, under pointwise multiplication. Also, G acts

on Â by gχ = χg with χg(x) = χ(g−1xg) for x ∈ A; this is well-de�ned since A is normal.

(Note also that we can uniquely write g = ah so that χg(x) = χ(h−1a−1xah) = χ(h−1xh) = χh(x).)

Let {χi}i∈I consist of one element from each orbit in Â/G. For i ∈ I, let Hi = {h ∈ H : χh
i = χi} be the

stabilizer in H of χi, and let Gi = AHi be the semidirect product of A and Hi. Observe that χi extends to

a one-dimensional representation of Gi by χ̃i(ah) = χi(a) since

χ̃i(a1h1a2h2) = χ̃i(a1h1a2h
−1
1 h1h2) = χi(a1h1a2h

−1
1 )

= χi(a1)χi(h1a2h
−1
1 ) = χi(a1)χi(a2) = χ̃i(a1h1)χ̃i(a2h2).

Similarly, let ρ be an irreducible representation of Hi. Since the projection π : Gi → Hi de�ned by π(ah) = h

is clearly a surjective homomorphism, ρ lifts to the irreducible representation ρ̃ = ρ ◦ π of Gi.

Example 3.3 shows that χ̃i ⊗ ρ̃ is an irreducible representation of Gi, and we can form the representation

θi,ρ = IndGGi
(χ̃i ⊗ ρ̃) of G.

The following theorem asserts that these are precisely the irreps of G.

Theorem 6.5.

(1) Each θi,ρ is an irreducible representation of G.

(2) If θi,ρ is equivalent to θj,η then i = j and ρ is equivalent to η.

(3) Every irreducible representation of G is equivalent to some θi,ρ.

Proof.

(1) We appeal to Theorem 6.4. Since χ̃i ⊗ ρ̃ ∈ Irr(Gi), we just need to check that ResGi

Gi∩Gs
i
(χ̃i ⊗ ρ̃) and

Res
Gs

i

Gi∩Gs
i
(χ̃i ⊗ ρ̃)s are disjoint for s /∈ Gi.

Now Gs
i = sAHis

−1 = AHs
i , so we can uniquely write each g ∈ Gi ∩Gs

i as g = at with a ∈ A and t ∈ Si

for some transversal Si of A in Gi ∩Gs
i ; without loss, A ∩ Si = {id}, so Si ⊆ Hs

i .

In this case, χχ̃i⊗ρ̃(g) = χ̃i(g)χρ̃(g) = χi(a)χρ(t) and χ(χ̃i⊗ρ̃)s(g) = χ̃i(s
−1gs)χρ̃(s

−1gs) = χs
i (a)χ

s
ρ(t),

hence 〈
ResGi

Gi∩Gs
i
χ(χ̃i⊗ρ̃),Res

Gs
i

Gi∩Gs
i
χ(χ̃i⊗ρ̃)s

〉
Gi∩Gs

i

=
1

|Gi ∩Gs
i |

∑
g∈Gi∩Gs

i

χχ̃i⊗ρ̃(g)χ(χ̃i⊗ρ̃)s(g)

=
1

|Gi ∩Gs
i |
∑
t∈Si

∑
a∈A

χ̃i(a)χρ̃(t)χ
s
i (a)χ

s
ρ(t)

=
1

|Gi ∩Gs
i |
∑
t∈Si

χρ̃(t)χs
ρ(t)

∑
a∈A

χi(a)χs
i (a).

Since s /∈ Gi ensures that χi and χ
s
i are inequivalent irreps of A,

∑
a∈A χi(a)χs

i (a) = 0. This establishes

disjointness and thereby the claim.
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(2) Let Ti be a transversal of Hi in H, which we may suppose contains id. Since A is abelian and H

a complement of A in G, Ti is also a transversal for Gi = AHi in G. Moreover, for any x ∈ G,

AxGi = xAGi = xGi, so Ti serves as a set of (A,Gi)-double coset representatives.

Writing χi,ρ for the character of θi,ρ, Theorem 6.3 yields

ResGAχi,ρ = ResGAInd
G
Gi
(χ̃i ⊗ χρ̃) =

∑
s∈Ti

IndAA∩Gs
i
Res

Gs
i

A∩Gs
i
(χ̃i ⊗ χρ̃)

s

=
∑
s∈Ti

IndAA∩Gs
i
χs
iχ

s
ρ̃ =

∑
s∈Ti

dρχ
s
i ,

where the �nal equality used A ≤ Gs
i and ρ̃s(a) = ρ̃(a) = ρ(id) for all s ∈ G, a ∈ A. As the restriction

θi,ρ to A only involves characters in the orbit of χi, θi,ρ uniquely determines i.

Now let V be the representation space of θi,ρ and W the representation space of χ̃i ⊗ ρ̃. Then we

can write V =
⊕

s∈Ti
sW with sW ∼= W and θi,ρ(g)

∑
s∈Ti

sws =
∑

s∈Ti
sg
(
χ̃i ⊗ ρ̃

)
(hg,s)ws where

sg ∈ Ti, hg,s ∈ Gi satisfy gs = sghg,s. When g ∈ Gi and s = id, we have sg = id,hg,s = g, thus if

v ∈ V ′ =
{∑

s∈Ti
sws : ws = 0 for s ̸= id

}
, then θi,ρ(a)v = χi(a)v for all a ∈ A and θi,ρ(h)v = ρ(h)v

for all h ∈ Hi. In particular, (ResGHi
θi,ρ, V

′) is equivalent to ρ, hence θi,ρ determines ρ as well.

(3) θi,ρ = IndGGi
(χ̃i ⊗ ρ̃) has degree |G||Gi|dχ̃i⊗ρ̃ = |G|

|Gi|dρ, so for each �xed i ∈ I,

∑
ρ∈Irr(Gi)

d2θi,ρ =
|G|2

|Gi|2
∑

ρ∈Irr(Gi)

d2ρ =
|G|2

|Gi|2
|Hi| =

|A|2 |H|2

|A|2 |Hi|2
|Hi| =

|H|2

|Hi|
.

Now the orbit-stabilizer theorem tells us that |H||Hi| = |O(χi)|, so∑
i∈I

∑
ρ∈Irr(Hi)

d2θi,ρ =
∑
i∈I

|H|2

|Hi|
= |H|

∑
i∈I

|O(χi)| = |H|
∣∣Â∣∣ = |H| |A| = |G| . □

47



7 The Symmetric Group

In this section, we will explore the representation theory of Sn, which is particularly beautiful and replete

with interesting combinatorics and connections to other areas of mathematics. Of course, we will only be

able to scratch the surface here.

To begin, a partition λ of n (denoted λ ⊢ n) is an ordered collection of positive integers λ = (λ1, . . . , λk)

where λ1 ≥ · · · ≥ λk and λ1+· · ·+λk = n. The partitions of n index the conjugacy classes of Sn by specifying

cycle type, and they can be represented by Young diagrams, which are left-justi�ed arrays of boxes having

λi in the ith row.

For instance the partition (3, 2, 2, 1) ⊢ 8 has Young diagram

.

If the boxes are populated by distinct elements of [n], then the resulting object is called a Young tableau of

shape λ, or λ-tableau for short. The following will serve as our running example:

t′ =

3 5 1

4 2

6 8

7

.

De�ne a partial order on partitions by (λ1, . . . , λk) ⊵ (µ1, . . . , µℓ) if λ1 + · · ·+λi ≥ µ1 + · · ·+µi for all i ≥ 1

(with λi = 0 when i > k, say). Thus, (4, 2) ⊵ (3, 3), (4, 1, 1), but (3, 3) and (4, 1, 1) are not comparable.

Lemma 7.1. Suppose that λ, µ ⊢ n, let t be a λ-tableau, and let s be a µ-tableau. If for each i, the numbers

in the ith row of s belong to di�erent columns of t, then λ ⊵ µ.

Proof. We can construct a λ-tableau u that has the same entries as t in each column and contains the entries

from the �rst i rows of s in its �rst i rows. This implies the claim since it guarantees that the number of

entries in the �rst i rows of u is at least the number of entries in the �rst i rows of s.

To get u from t, start by moving each entry in the �rst row of s to the top of the column that contains it in

t. Then move each entry from the second row of s to the topmost position in its column of t that has not

yet been used. Continuing thusly we arrive at u, and each step is legitimate since the entries of any row of

s belong to di�erent columns of t. □

Now the symmetric group acts on λ-tableaux by permuting their entries. Thus if π = (17)(245)(368), then

πt′ =

6 2 7

5 4

8 3

1

.

Given a Young tableau t, de�ne its column stabilizer Ct to be the group of all permutations π such that t

and πt have the same elements in each column. For example, Ct′ = S{3,4,6,7}S{2,5,8}S{1} ∼= S4 × S3, where

SX denotes the subgroup of Sn that �xes all elements in [n] \X.
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De�ne an equivalence relation on the set of λ-tableaux by declaring that t1 ∼ t2 if they have the same entries

in each row, e.g.

3 5 1

4 2

6 8

7

∼

1 3 5

2 4

6 8

7

.

(The tableau on the right is called standard since its entries increase along each row and column.)

Equivalence classes of tableaux are called tabloids. The tabloid associated with tableau t is denoted {t} and

the set of λ-tabloids is denoted Tλ. If λ = (λ1, . . . λk), then
∣∣Tλ
∣∣ = n!/λ1! · · ·λk!.

Also, if t1 ∼ t2, then σt1 ∼ σt2 for all σ ∈ Sn because if a is in row i of σt1, then σ
−1(a) is in row i of t1, so

σ−1(a) is in row i of t2, so a is in row i of σt2, and conversely. In particular, π{t} = {πt} de�nes an action

of Sn on Tλ.

For a �xed partition λ, de�ne the permutation module Mλ to be the complex vector space with basis vectors{
e{t} : {t} ∈ Tλ

}
, and consider the representation (ρλ,M

λ) de�ned by ρλ(π)e{t} = e{πt}.

We will construct a unique irreducible subrepresentation of each Mλ. As the number of partitions equals

the number of conjugacy classes, this will account for all of them.

Example 7.1. For the trivial partition (n), there is a single tabloid, so ρ(n) is the trivial representation.

At the other extreme, each tabloid {t} of shape (1n) := (1, . . . , 1) contains only the tableau t, which we can

represent as the permutation σ with σ(i) the element in row i of t. ρ(1n) is thus the regular representation

ρ(1n)(π)eσ = eπσ.

The tabloids of shape (n−1, 1) are determined by the content of the single box in the second row, soM (n−1,1)

has basis e1, . . . , en with ρ(n−1,1)(π)ek = eπ(k). This is the n-dimensional permutation representation, which

splits as the direct sum of the trivial representation and the standard representation.

Given partitions λ, µ ⊢ n and a λ-tableau t, de�ne the operator At :M
µ →Mµ by At =

∑
π∈Ct

sgn(π)ρµ(π).

When µ = λ, we call ft := Ate{t} =
∑

π∈Ct
sgn(π)e{πt} the polytabloid associated with t.

Proposition 7.1. ρλ(σ)ft = fσt for all tableaux t of shape λ and all σ ∈ Sn.

Proof. For σ ∈ Sn, S ⊆ Sn, s ⊆ [n], write σS =
{
σπ : π ∈ S

}
, Sσ =

{
πσ : π ∈ S

}
, and σs =

{
σ(i) : i ∈ s

}
.

If cj is the set of entries in the jth column of t, then c′j = σcj is the set of entries in the jth column of σt

and we have

π ∈ Cσt ⇐⇒ πc′j = c′j ∀j ⇐⇒ (πσ)cj = σcj ∀j

⇐⇒ (σ−1πσ)cj = cj ∀j ⇐⇒ σ−1πσ ∈ Ct

⇐⇒ π ∈ σCtσ
−1.

As sgn(·) is invariant under conjugation and Cσt = σCtσ
−1, a change of variables gives

fσt =
∑

π∈Cσt

sgn(π)e{πσt} =
∑

π∈σCtσ−1

sgn(σ−1πσ)e{πσt}

=
∑
η∈Ct

sgn(η)e{σηt} =
∑
η∈Ct

sgn(η)ρλ(σ)e{ηt} = ρλ(σ)ft. □
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Thus if we de�ne the Specht module Sλ to be the span of the polytabloids for tableaux of shape λ, then Sλ

is a stable subspace of Mλ. (Sn acts transitively on the set of λ-tableaux, so for any λ-tableau t, we can

write Sλ = span
{
fσt : σ ∈ Sn

}
.) Our goal is to show that the Sλ are irreducible and inequivalent.

Example 7.2. We saw in Example 7.1 that each tabloid t of shape (1n) corresponds to some σ ∈ Sn.

Clearly its column stabilizer is Ct = Sn, so the associated polytabloid is ft =
∑

π∈Sn
sgn(π)e{πσ}. Since

sgn : Sn → {±1} is a homomorphism,

ρ(1n)(α)ft = fαt =
∑
π∈Sn

sgn(π)e{πασ}

= sgn(α−1)
∑
π∈Sn

sgn(πα)e{πασ} = sgn(α)ft,

hence S(1n) is the sign representation.

Lemma 7.2. Let λ, µ ⊢ n. Suppose t is a λ-tableau and s is a µ-tableau with Ate{s} ̸= 0.

Then λ ⊵ µ, and if λ = µ, then Ate{s} = ±ft.

Proof. Suppose there exist a, b ∈ [n] such that a and b are in the same row of s and the same column of t.

Then ρµ
(
(ab)

)
e{s} = e{s} and ⟨(ab)⟩ ≤ Ct. Choosing a transversal σ1, . . . , σr gives

Ate{s} =
∑
π∈Ct

sgn(π)ρµ(π)e{s} =

r∑
k=1

[
sgn(σk)ρµ(σk)e{s} + sgn

(
σk(ab)

)
ρµ
(
σk(ab)

)
e{s}

]
=

r∑
k=1

sgn(σk)ρµ(σk)
[
e{s} − ρµ

(
(ab)

)
e{s}

]
= 0.

But this contradicts our assumption, so it must be the case that any elements belonging to the same row of

s are in di�erent columns of t, hence λ ⊵ µ by Lemma 7.1.

If λ = µ, then the fact that the elements in each row of s are in di�erent columns of t implies that s = π̃t

for some π̃ ∈ Ct. (Since the �rst rows of s and t have the same number of elements and those in the �rst

row of s are in di�erent columns of t, there is a permutation π1 ∈ Ct so that the sets of elements in the �rst

rows of s and π1t agree. Likewise, there is a permutation π2 ∈ Ct that �xes the �rst row of π1t and ensures

that the second rows of s and π2π1t contain the same elements...) It follows that

Ate{s} =
∑
π∈Ct

sgn(π)e{πs} =
∑
π∈Ct

sgn(π)e{ππ̃t}

=
∑
σ∈Ct

sgn(σ)sgn(π̃−1)e{σt} = sgn(π̃)ft. □

Lemma 7.3. Let v ∈Mλ and let t be a λ-tableau. Then Atv = cft for some scalar c ∈ C.

Proof. Lemma 7.2 gives Ate{s} = c{s}ft where c{s} ∈ {−1, 0, 1}. Since v =
∑
{s}∈Tλ α{s}e{s} for some

scalars
{
α{s}

}
⊆ C, we have

Atv =
∑
π∈Ct

sgn(π)ρλ(π)
∑
{s}∈Tλ

α{s}e{s}

=
∑
{s}∈Tλ

α{s}
∑
π∈Ct

sgn(π)ρλ(π)e{s} =

( ∑
{s}∈Tλ

α{s}c{s}

)
ft. □
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Now put an inner product ⟨·, ·⟩ on Mλ that makes
{
e{s}

}
{s}∈Tλ an orthonormal set and for which ρλ is

unitary. Then for any λ-tableau t and any u,v ∈Mλ, we have

⟨Atu,v⟩ =
∑
π∈Ct

sgn(π) ⟨ρλ(π)u,v⟩ =
∑
π∈Ct

sgn(π−1)
〈
u, ρλ(π

−1)v
〉

=
∑
π∈Ct

sgn(π) ⟨u, ρλ(π)v⟩ = ⟨u, Atv⟩ ,

thus At self-adjoint with respect to ⟨·, ·⟩.

Theorem 7.1 (Submodule Theorem). Let V be a stable subspace ofMλ. Then either Sλ ⊆ V or V ⊆
(
Sλ
)⊥

.

Proof. Suppose there is a λ-tableau t and a vector v ∈ V such that Atv ̸= 0. Lemma 7.3 and the invariance

of V imply that there is a nonzero c ∈ C with cft = Atv ∈ V . It follows that fσt = ρλ(σ)ft ∈ V for all σ ∈ Sn

and thus Sλ = span
{
fσt : σ ∈ Sn

}
⊆ V .

The only other possibility is that for every λ-tableau t and vector v ∈ V , Atv = 0, so ⟨ft,v⟩ =
〈
Ate{t},v

〉
=〈

e{t}, Atv
〉
= 0 and thus V ⊆

(
Sλ
)⊥

. □

Corollary 7.1. For each λ ⊢ n, (ρλ, Sλ) is irreducible.

Proof. Suppose that V is a proper stable subspace of Sλ. Then Theorem 7.1 implies V ⊆
(
Sλ
)⊥

, and the

assertion follows since Sλ ∩
(
Sλ
)⊥

= {0}. □

It remains only to understand how the Specht modules corresponding to di�erent partitions relate to one

another. Speci�cally, to account for all irreps, we must show that Sλ and Sµ are not equivalent when λ ̸= µ.

Lemma 7.4. Let λ, µ ⊢ n and suppose that T is a linear map from Mλ to Mµ that commutes with the

action of Sn. If S
λ ̸⊆ ker(T ), then λ ⊵ µ. Moreover, if λ = µ, then T |Sλ is a scalar multiple of the identity.

Proof. Suppose Sλ ̸⊆ ker(T ). Since T is an intertwining map, ker(T ) is a stable subspace ofMλ, so Theorem

7.1 implies ker(T ) ⊆
(
Sλ
)⊥

. Thus for any λ-tableau t, 0 ̸= T ft = TAte{t} = AtTe{t}, where the �nal equality

used TAt =
∑

π∈Ct
sgn(π)Tρλ(π) =

∑
π∈Ct

sgn(π)ρµ(π)T = AtT .

Since Te{t} =
∑
{s}∈Mµ α{s}e{s} for some scalars

{
α{s}

}
{s}∈Mµ , it must be the case that Ate{s} ̸= 0 for

some {s} ∈Mµ, hence λ ⊵ µ by Lemma 7.2.

If λ = µ, then Lemma 7.3 ensures the existence of some c ∈ C such that T ft = AtTe{t} = cft ∈ Sλ, hence T

maps Sλ to itself. As Sλ is irreducible, Schur's lemma implies that T |Sλ = cI. □

Lemma 7.5. Let T : Sλ → Sµ be a linear map that commutes with the action of Sn. If T ̸= 0, then λ ⊵ µ.

Proof. Any such T can be extended to a linear map T ′ from Mλ to Mµ by declaring T ′v = 0 for all

v ∈
(
Sλ
)⊥

, and the invariance of Sλ and
(
Sλ
)⊥

implies that for each u ∈ Sλ, v ∈
(
Sλ
)⊥

, σ ∈ Sn,

T ′ρλ(σ)(u+ v) = T ′ρλ(σ)u+ T ′ρλ(σ)v = Tρλ(σ)u

= ρµ(σ)Tu = ρµ(σ)T
′(u+ v).

Thus if T ̸= 0, then Lemma 7.4 tells us that λ ⊵ µ. □
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Theorem 7.2. Specht modules corresponding to distinct partitions are inequivalent.

Proof. If ρλ and ρµ are equivalent, then there is a nonzero linear map T : Sλ → Sµ with T ◦ ρλ = ρµ ◦ T ,
so Lemma 7.5 implies λ ⊵ µ. A symmetric argument shows that µ ⊵ λ, proving the contrapositive of the

assertion. □

In fact, Lemma 7.4 tells us a bit more about the direct sum decomposition of the permutation modules:

Corollary 7.2. (ρµ, S
µ) has multiplicity one in (ρµ,M

µ), and any other irreducible constituent (ρλ, S
λ)

must satisfy λ ⊵ µ.

Finally, we observe that while the Specht module Sλ is spanned by the λ-polytabloids, they are not linearly

independent in general; see Example 7.2. However, one can show that the set of polytabloids corresponding

to standard tableaux of shape λ actually forms a basis for Sλ. The degree of ρλ is thus the number of

standard λ-tableau, which can be computed using the famous hook length formula.

Clearly there's plenty more representation theory to study, even apart from considering in�nite groups or

�elds other than C!
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Appendix

Lemma 7.6 (Bézout's lemma). The greatest common divisor of positive integers b1, . . . , bk is the smallest

positive integer which can be expressed as an integral linear combination of b1, . . . , bk.

Proof. Let d = α1b1+ . . .+αkbk be the smallest positive integer which can be so expressed. (Such a number

exists by the well-ordering of N.) If any bj is divided by d, then its remainder 0 ≤ rj < d is of the form

rj = α′1b1+ . . .+α
′
kbk since it is obtained by subtracting a multiple of d from bj . As d is the smallest positive

integer of this form, it must be the case that rj = 0, hence d is a divisor of each bj . If c is any other common

divisor of b1, . . . , bk, then c divides d as well, hence d is the greatest common divisor. □

Theorem 7.3 (Second Isomorphism Theorem). If H ◁ G and K ≤ G, then HK ≤ G, H ∩K ◁ K, and

K/(H ∩K) ∼= HK/H.

Proof. We have already seen that HK ≤ G, and since H ⊆ HK with H ◁ G, we have that H ◁ HK.

Now suppose xH ∈ HK/H. Then x = hk = kk−1hk = kh′ for some h, h′ ∈ H, k ∈ K, so xH = kH. It

follows that the map φ : K → HK/H de�ned by φ(k) = kH is a surjective homomorphism. Its kernel is

clearly H ∩K, so Theorem 1.1 shows that H ∩K ◁ K and K/(H ∩K) = K/ker(φ) ∼= Im(φ) = HK/H. □

Theorem 7.4 (Third Isomorphism Theorem). If H,K ◁ G and K ≤ H, then H/K ◁ G/K and

(G/K)/(H/K) ∼= G/H.

Proof. Let φ : G/K → G/H be given by φ(gK) = gH. φ is well-de�ned because if aK = bK, then

a−1b ∈ K ≤ H, so aH = bH, and one readily checks that it is a surjective homomorphism. Since gH = H

i� g ∈ H, ker(φ) = {gK ∈ G/K : gH = H} = H/K, so Theorem 1.1 gives (G/K)/(H/K) ∼= G/H. □

Theorem 7.5 (Correspondence Theorem). Suppose that N ◁ G and de�ne S(G;N) = {H ≤ G : N ≤ H},
S(G/N) = {K : K ≤ G/N}. Then the map ψ : S(G;N) → S(G/N) de�ned by ψ(S) = S/N is a bijection.

Also, for any S, T ∈ S(G;N), T ≤ S if and only if ψ(T ) ≤ ψ(S), in which case [S : T ] = [ψ(S) : ψ(T )].

Moreover, T ◁ S if and only if ψ(T ) ◁ ψ(S), in which case S/T ∼= ψ(S)/ψ(T ).

Proof. If N ≤ H ≤ G, then H/N is a subgroup of G/N since it is a subset which is itself a group. To see

that ψ is injective observe that if S, T ∈ S(G;N) with S/N = T/N , then for any s ∈ S, there is a t ∈ T

with sN = tN so that s = tn for some n ∈ N ≤ T , hence s ∈ T . The reverse inclusion is proved similarly.

To see that ψ is surjective, suppose that A′ ≤ G/N and de�ne A = {x ∈ G : xN ∈ A′}. If x, y ∈ A, then

xN, yN ∈ A′, hence xy−1N = xNy−1N = (xN)(yN)−1 ∈ A′. This shows that A is a subgroup of G, and it

contains N since nN = N ∈ A′ for all n ∈ N . Surjectivity follows since A′ = ψ(A) by construction.

Since bijections preserve set inclusion, it's clear that T ≤ S i� ψ(T ) ≤ ψ(S), and one can check that

the map sT 7→ (sN)ψ(T ) is bijection from cosets of T in S to those of T/N in S/N . (For �nite groups,

[S : T ] = [ψ(S) : ψ(T )] is an arithmetic consequence of [G : H] = |G| / |H|.)

If T ◁ S, then the third isomorphism theorem gives T/N ◁ S/N and (S/N)/(T/N) ∼= S/T . Finally, if

T/N ◁ S/N , t ∈ T , and s ∈ S, then (sts−1)N = (sN)(tN)(sN)−1 ∈ T/N , hence sts−1 = t′n′ for some

t′ ∈ T , n′ ∈ nN ≤ T , showing that sts−1 ∈ T . □
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Lemma 7.7. If G is a p-group acting on a �nite set X and FixG(X) = {x ∈ X : gx = x for all g ∈ G} is

the set of �xed points, then |X| ≡ |FixG(X)| (mod p).

Proof. Write X =
⊔r

i=1 O(xi) with {x1, . . . , xs} = FixG(X) so that |X| = |FixG(X)|+
∑r

i=s+1 |O(xi)|. Since
|O(xi)| = |G| /

∣∣Gxi

∣∣ is divisible by p for i > s, the result follows. □

Theorem 7.6 (Sylow II). If P and Q are p-Sylow subgroups of G, then Q = gPg−1 for some g ∈ G.

Proof. Let Q act on the family of cosets G/P by left multiplication and write FixQ(G/P ) for the set of

�xed points. Lemma 7.7 gives |G/P | ≡ |FixQ(G/P )| (mod p). Since |G/P | = |G| / |P | is not divisible by p,
|FixQ(G/P )| ̸= 0, so there is some gP ∈ FixQ(G/P ). This means that q(gP ) = gP , hence qg ∈ gP , for all

q ∈ Q, so Q ⊆ gPg−1. As conjugation by g is an automorphism of G,
∣∣gPg−1∣∣ = |P | = |Q| and we conclude

that Q = gPg−1. □

Theorem 7.7 (Sylow III). Suppose that |G| = pkm with p ∤ m and write np for the number of p-Sylow

subgroups of G. Then np
∣∣m and np ≡ 1 (mod p). If P is any p-Sylow subgroup of G and NG(P ) is its

normalizer in G, then np = [G : NG(P )].

Proof. Write Sylp(G) for the set of p-Sylow subgroups of G, and let P act on Sylp(G) by conjugation.

(h 7→ ghg−1 is an automorphism of G and thus maps subgroups to subgroups of the same size.) We will

show that FixP
(
Sylp(G)

)
= {P}, so that np ≡ 1 (mod p) by Lemma 7.7.

To this end, note that FixP
(
Sylp(G)

)
=
{
Q ∈ Sylp(G) : gQg−1 = Q for all g ∈ P

}
, so we certainly have

that P ∈ FixP
(
Sylp(G)

)
. If Q ∈ FixP

(
Sylp(G)

)
, then P ≤ NG(Q). Since Q ≤ NG(Q) as well, we see that

P and Q are p-Sylow subgroups of NG(Q) and thus are conjugate. But Q ◁ NG(Q), so it must be the case

that Q = P , and the assertion follows.

For the remaining claims, let G act on Sylp(G) by conjugation. Theorem 7.6 implies that Sylp(G) = O(P )

and the corresponding stabilizer is NG(P ), hence np = |O(P )| = [G : NG(P )]. As this must divide |G| = pkm

and we know that np ≡ 1 (mod p), we conclude that np
∣∣m. □

Fact 7.1. Given M ∈ Cd×d, de�ne Tr(M) =
∑d

k=1Mk,k.

(1) If A ∈ Cm×n and B ∈ Cn×m, then Tr(AB) = Tr(BA).

(2) If T : V → V is a linear transformation, B is the matrix for T with respect to a basis B, and C is the

matrix for T with respect to a basis C, then Tr(B) = Tr(C).

(3) If A ∈ Cn×n has eigenvalues (counting multiplicity) λ1, . . . , λn, then Tr(A) =
∑n

k=1 λk.

Proof.

(1)

Tr(AB) =

m∑
k=1

(AB)k,k =

m∑
k=1

n∑
ℓ=1

Ak,ℓBℓ,k

=

n∑
ℓ=1

m∑
k=1

Bℓ,kAk,ℓ =

n∑
ℓ=1

(BA)ℓ,ℓ = Tr(BA).
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(2) Let P be the change-of-basis matrix from B-coordinates to C-coordinates. Then C = PBP−1, so

Tr(C) = Tr(PBP−1) = Tr
(
(PB)P−1

)
= Tr

(
P−1(PB)) = Tr

(
(P−1P )B) = Tr(B).

(3) Let A be given in Jordan normal form as A = PJP−1. Then J is upper-triangular with the eigenvalues

of A on its main diagonal, so

Tr(A) = Tr(PJP−1) = Tr(J) =

n∑
k=1

Jk,k =

n∑
k=1

λk.

Alternatively, the coe�cient of λn−1 in φ(λ) = det(λI − A) is −Tr(A), and the coe�cient of λn−1 in

φ(λ) =
∏n

k=1(λ− λk) is −
∑n

k=1 λk.

□

Fact 7.2 (Rational Roots Test). Let p(z) = anz
n + · · · + a1z + a0 with a0, . . . , an ∈ Z. If r, s ∈ Z satisfy

(r, s) = 1 and p(r/s) = 0, then r | a0 and s | an.

Proof. Multiplying an(r/s)
n+ · · ·+a1(r/s)+a0 = 0 by sn gives anr

n+an−1r
n−1s · · ·+a1rsn−1+a0sn = 0.

It follows that −a0sn = r(anr
n−1 + · · · + a1s

n−1), hence r | a0, and −anrn = s(an−1r
n−1 + · · · + a0s

n−1),

hence s | an. □

Lemma 7.8. y ∈ C is an algebraic integer if and only if there exist w1, . . . , wn ∈ C, not all zero, such that

wiy =
∑n

j=1 bijwj for some integers {bij}ni,j=1.

Proof. If y is an algebraic integer, then there exist a0, . . . , an−1 ∈ Z with yn+an−1y
n−1+ · · ·+a1y+a0 = 0.

Taking wi = yi−1 for i ∈ [n] gives wiy = yi = wi+1 for 1 ≤ i < n and wny = yn = −a0w1 − · · · − an−1wn.

Conversely, suppose wiy =
∑n

j=1 bijwi and let B be the n×n matrix with (i, j)-entry bij . Setting w =

[ w1

...
wn

]
,

we have Bw = yw, so y is an eigenvalue of the integer matrix B and thus a root of the monic polynomial

p(z) = det(zI −B). □

Proposition 7.2. The algebraic integers form a subring of C.

Proof. 1 ∈ A since it solves z−1 = 0. Suppose y, z ∈ A. By Lemma 7.8, there are w1, . . . , wm, x1, . . . , xn ∈ C,
{bij}mi,j=1, {ckℓ}nk,ℓ=1 ⊆ Z satisfying wiy =

∑m
j=1 bijwj and xkz =

∑n
ℓ=1 ckℓxℓ.

It follows that wi(−y) =
∑m

j=1(−bij)wj , hence −y ∈ A; (wixk)(y + z) =
∑m

j=1 bijwjxk +
∑n

ℓ=1 ckℓwixℓ,

hence y + z ∈ A; and (wixk)(yz) = (wiy)(xkz) =
(∑m

j=1 bijwj

)(∑n
ℓ=1 ckℓxℓ

)
=
∑m

j=1

∑n
ℓ=1(bijckℓ)(wjxℓ),

hence yz ∈ A. □
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Proposition 7.3. The maps ResGH : C(G) → C(H) and IndGH : C(H) → C(G) are linear.

Proof. If Φ ∈ C(G) and x, y ∈ H, then xyx−1 ∈ H, hence

ResGHΦ(xyx−1) = Φ(xyx−1) = Φ(y) = ResGHΦ(y).

If Ψ ∈ C(G) and α, β ∈ C as well, then

ResGH
[
αΦ+ βΨ

]
(x) = αΦ(x) + βΨ(x) = αResGHΦ(x) + βResGHΨ(x).

If ϕ ∈ C(H) and x, y ∈ G, then

IndGHϕ(xyx
−1) =

1

|H|
∑
z∈G

ϕ̃(z−1xyx−1z) =
1

|H|
∑
z∈G

ϕ̃(w−1yw) = IndGHϕ(y),

where we made use of the reindexing w = x−1z.

If ψ ∈ C(H) and α, β ∈ C as well, then

IndGH
[
αϕ+ βψ

]
(x) =

1

|H|
∑
z∈G

˜αϕ+ βψ(z−1xz) =
1

|H|
∑
z∈G

[
αϕ̃(z−1xz) + βψ̃(z−1xz)

]
= α

1

|H|
∑
z∈G

ϕ̃(z−1xz) + β
1

|H|
∑
z∈G

ψ̃(z−1xz) = αIndGHϕ(x) + βIndGHψ(x). □
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