FINITE GROUPS AND THEIR REPRESENTATIONS

JOHN PIKE

These notes were written at Bridgewater State University in the Spring of 2023. A solid background in
undergraduate linear algebra and a decent amount of mathematical maturity is assumed. It is also expected
that students have had some prior exposure to group theory, but a self-contained treatment of the necessary
topics therein is provided in Section 1. Much of the material is taken from Advanced Modern Algebra by
Joseph Rotman, Linear Representations of Finite Groups by Jean-Pierre Serre, and Representation Theory
of Finite Groups by Benjamin Steinberg. There are likely typos and other mistakes. All such errors are

mine and corrections are greatly appreciated.



1 GROUPS

Before diving into our main topic, we briefly review some basic group theory in order to fix notation, record

a few useful results, and reacquaint ourselves with the general flavor of the subject.
A group is a set G equipped with a binary operation (a,b) — ab that satisfies

e (ab)c = a(be) for all a,b,c € G,
e there exists an identity element e such that ea = ae =a for all a € G

e for each a € G, there exists an inverse a~! € G with aa™! =a la=e

We say that G is abelian if one also has ab = ba for all a,b € G.

Note that the associative law means that the product abc is unambiguously defined, and thus, by induction,
sois ap - -+ a, for any aq,...,a, € G.
Also, the group identity is unique since fa = af = a for all a € G implies e = ef = f.

Similarly, if ab = ba = e, then b = be = b(aa™') = (ba)a™! = ea™! = a~!, so inverses are unique as well.

Moreover, since a 'a = aa~! = e, we see that (a=!)™! = a. Since (b=*a"1)(ab) = b " ata)b=b"1b=¢

a
and (ab)(b~ta™!) = a(bb~1)a™t = aea™t = aa~! = e, we have (ab)~t =b"ta"l.

Note too that if ab = ac, left-multiplying both sides by a ' shows that b = ¢, and if ba = ca, right-multiplying
both sides by a~! shows that b = c.
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An immediate consequence is that if ab = e or ba = e, then b = a™*; one only needs to verify that a purported

inverse is a one-sided inverse (provided that the group structure has already been established).
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Likewise, if ab = a for some a € G, then b = a~'ab = a~'a = e; it is enough to check that a purported

identity behaves appropriately at a single element.

We will use exponential notation to denote repeated multiplication so that for all a € G, n € N, a° = e and
a" = aa""!. This extends to negative exponents by writing a=" = (a~!)". With this convention, we have
ati = a'a/ and (a’)! = a¥ for all a € G, 4,5 € Z.

If G has order |G| = n, then the pigeonhole principle shows that the n + 1 elements a°,a, ..., a"™ cannot all
be distinct, so there must be some 0 < i < j < n with a’ = o/ and thus a’~% = e. In other words, for each
a € G, there is some 1 < k < n such that a* = e. The smallest such k is called the order of a, denoted o(a).

Observe that if a’ = e for some ¢ > 0, then we must have o(a) | ¢ since £ = m - o(a) + r with m > 0 and

0 < r < o(a) implies a” = (a°®)™a" = a’ = e, contradicting the minimality of o(a).

Example 1.1. For n € N, the set [n]g := {0,1,2,...,n— 1} endowed with the operation of addition modulo
n is called the cyclic group of order n, written Z/nZ. The identity element is 0 and the inverse of j is n — j.

The cyclic group of order 10 is Z/10Z = {0,1,2,..9} with 1 +2=3,5+5 =0, and 6 + 8 = 4, for example.

Example 1.2. The set [n]y does not form a group under multiplication because the multiplicative identity
is 1, and there is no 7 with the property that j-0=1.

However, U,, = {j € [n]o : ij = 1 (modn) for some i € [n]o} does form a group under multiplication. The
identity is 1, each element has an inverse by construction, and associativity is inherited from Z. Multiplicative

closure follows by observing that if j, k € U,,, then there exist j =%, k= € U,, C [ng] which necessarily satisfy
k=17t € [ng] and (k=151 (jk) = 1.



If (i,j) = d is the largest positive integer that divides both ¢ and j, then Bézout’s lemma equivalently
characterizes d as the smallest positive integer that can be expressed as ai + (j for some o, 8 € Z. When
d =1, we say that ¢ and j are relatively prime. Thus if j and n are relatively prime, then there exist integers
a, B with aj + fn = 1 and thus aj = 1 (modn). Taking i € [ng] to be the congruence class representative
of « certifies that j € U,. Conversely, if (j,n) > 1, then there can be no i € [ng] with ij = 1 (modn) as this
would imply 75 + fn = 1 for some § € Z.

When p is prime, we have U, = [p — 1] where we are using the notation [n] := {1,2,...,n}.

The group of units for n =10 is Uy = {1,3,7,9} with 3-3 =9, 7-9 =3, and 9-9 = 1, for example.

Example 1.3. Another abelian group is the Klein four-group, consisting of the symbols e, a, b, ¢ with group
law encoded in the Cayley table

0 o %
0O " oo
S0 0 2|9
2 0 0 oo
o oo

Thus every element is its own inverse and the product of any two non-identity elements is the third.

One way to realize this group is to take e = (0,0), a = (0,1), b = (1,0), and ¢ = (1,1) where the
product of two elements is their coordinatewise sum modulo 2—e.g. ab = (0,1) + (1,0) = (1,1) = ¢
and ac = (0,1) + (1,1) = (1,0) = b.
10 1 0 -1 0 -1 0
Another is to set e = , 4 = , b= , C = , and compute products by
0 1 0 -1 0 1 0 -1

ordinary matrix multiplication.

2
-1 -1 1 1 1

For instance, we find that bc = 0 0 = 0 =¢q and a? = 0 = 0 —e
0 1 0o -1 1 0 -1 0 1

Example 1.4. A standard nonabelian example is the dihedral group of order 2n, which has presentation
D, = <r,s | =% = (sr)? = e>. This says that D,, is generated by the symbols r and s subject to the
relations r" = s% = (sr)? = e.

A consequence is that r*s = sr~* for all k € N since (sr)(sr) = e = s? implies rs = s%(rs)(rr~!) =
s(sr)(sr)r~' = sr~, and if r¥s = sr7F, then r*+ls = r(rkfs) = r(sr=%) = (rs)r=% = (sr=1)r=F = sp=(k+1),

This shows that r¥s is self-inverse since (r*s)(rks) = (r¥s)(sr=F) = rks?r=F = rkr=F = ¢.

The elements of D,, are thus of the form 7* or 7*s, k = 0,1, ...,n—1, with multiplication given by rirJ = i*7,
ri(ris) = rtis, ri(srt) = srirt = sri~t = ri=Js, and (r's)(ris) = sr7iris = sri~is = ri7is? = ri7J; the
addition in the exponents is performed modulo n.

We think of D,, as encoding the symmetries of a regular n-gon under rotation and reflection: 7* rotates the
figure by 27k /n radians, and s reflects it about a fixed line of symmetry. There are n lines of symmetry in
total and r¥s corresponds to a reflection about the (n — k) from that described by s. (When n is odd,
these lines of symmetry run from a vertex to the midpoint of its opposing side. When n is even, there are

n/2 connecting opposing vertices and n/2 connecting opposing edges.)



Example 1.5. Perhaps the most important finite group is S,,, the symmetric group on n symbols, which
consists of all bijections from [n] to itself with function composition as the group law. The order of S, is
n! since a bijection o : [n] — [n] is determined by specifying one of the n possibilities for o (1), one of the
remaining n — 1 for ¢(2), and so forth.

1 2 ...
We can envision a permutation o € S,, using the two-line notation o = " .
o(l) o(2) -+ o(n)
This lets us think of the product o7 as having the number below j that which appears below 7(j) in o.

. . 1 2 3 4 5 1 2 3 4 5 1 2 3 45
For instance, if o = and 7 = , then o7 = .
4 2 1 5 3 5 3 1 2 4 31 4 25

Indeed, 7 sends 1 to 7(1) = 5 and ¢ sends 5 to o(5) = 3, so o7 sends 1 to o(7(1)) = o(5) = 3, and so on.

Of course, the top row is always fixed, so a more succinct description is given by the one-line notation which
just records the second row: ¢ = o(1)0(2) --- o(n).

This lets us think of permutations in terms of arrangements of a deck of cards labeled 1,...,n. Namely, o
is the arrangement with the card labeled o(k) in the k" position from the top (and thus the card labeled ¢
in position o~1(¢)).

A more dynamical picture is that, starting with the ordered deck e = 12 --- n, o moves the card that was in
position o (k) into position k to obtain the arrangement o = o(1) - -- o(n). The product o7 then corresponds
to the arrangement obtained by ‘shuffling’ the deck ordered according to ¢ in the manner specified by 7.
The card in position £ in the arrangement o7 is labeled J(T(k)) since 7 moves the card that was in position
7(k)—the one labeled o (7(k))—into position k. So 7-shuffling the o-arrangement 4215 3 takes the card in
position 7(1) = 5 (labeled o(5) = 3) and moves it to position 1, then takes the card in position 7(2) = 3

(labeled o(3) = 1) and moves it to position 2, etc., resulting in the o7-arrangement 31425.

In many instances, yet another description is to be preferred, the cycle notation. If i1,... 4, are distinct
elements of [n] and 7 € S, satisfies 7(i1) = 42, 7(i2) = i3,...,7(ir_1) = ir, 7(ir) = 41, and 7 (j) = j for
j ¢ {i1,..., 4}, then we say that @ = (i1 42...4,) is an r-cycle. For instance, the permutation 7 above is the

5-cycle T = (15423).

Any permutation can be factored as a product of disjoint cycles by starting with 1 and then hopping from
image to image before returning and starting the process anew with the smallest element not yet visited.
By way of example, o sends 1 to 4 to 5 to 3 to 1 and sends 2 to itself, so that ¢ = (1453)(2). Likewise, the
permutation m = 42513 factors as (14)(2)(35). In both cases, 2 is a fized point, and we often suppress such
1-cycles, writing o = (1453) and m = (14)(35), say, though the identity is sometimes denoted (1).

Observe that if « = (i1...4,) and 8 = (j1...7s) with {i1,...,4.} N {j1,...,4s} = 0, then a8 = fa.
Indeed, if k& ¢ {i1,...,ir,j1,--.,Js}, then a(B(k)) = a(k) = k = B(k) = B(a(k)). Otherwise, we have
a(B(ix)) = alix) = ire1 = Blixt1) = Bla(in)) or a(B(je) = aljer1) = jer1 = B(e) = B(a(je)) with
the subscript addition performed modulo r and s, respectively. This shows that rearranging the cycles in a
complete factorization has no effect, and of course, neither does cyclically shifting the terms within a cycle.

Modulo these operations, complete factorizations are unique because if oy -+ a3 = 0 = 1 - -+ 5; are decom-
positions of o into disjoint cycles, then for any k € [n] with o(k) # k, there is exactly one «; and one
B; which do not fix k. By relabeling the cycles if need be (which is legitimate since they commute), we
can assume that ¢ = s and j = ¢. It follows that a7 (k) = o™ (k) = 87" (k) for all m, hence ag = B4, so

ap- g1 =0 = -+ Bi—1. Continuing thusly establishes the assertion.
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A nice thing about factoring permutations into disjoint cycles is that inverses are particularly easy to com-
pute. Namely, (i142...%.) " = (ipip_1...41). Since disjoint cycles commute, the inverse of a product of
disjoint cycles is the product of their inverses. For instance, [(145)(2736))]7! = (541)(6372) = (154)(2637).
(Another method of computing inverses is to swap the rows in the two-line notation and then sort the

columns so the entries in the first row are increasing.)

We can also factor permutations into cycles that are not disjoint. In particular, o = (4 ...1,) factors as
o= By By with By = (i1 ix). Indeed, if By -+ Bo = (i1 ... ix), then [Be1(Be -+~ B2)](ik) = Brpa (in) = k1,
[Br+1(Br -+ - B2))(ik+1) = Bra1(ins1) = v, and [Brq1(Be -+ B2)](j) = [Br -~ B2](j) for j # ik, ik41. Since
permutations are products of disjoint cycles, we see that every permutation can be written as a product of

2-cycles, or transpositions.

In contrast with complete factorizations, the order generally does matter in a transposition decomposition.
For example, (12)(23) = (123) # (321) = (23)(12). Also, such decompositions are not unique: In Sy we can
write (123) = (12)(23) = (23)(13) = (13)(24)(12)(14) = ... However, the number of factors in a transposition
decomposition of a given permutation always has the same parity.

One way to see this is to define an inversion of = as a pair (¢, ) with ¢ < j and 7(¢) > w(j). Let N () be the
number of inversions of 7 and define sgn(r) = (—1)NV™), If 7 = (k¢) with k < £, then sgn(r7) = —sgn(n)
because 77 is obtained from 7 by swapping k and ¢ in the one-line notation, so every pair (¢,j) with
i,7 ¢ {k, ¢} has the same inversion status as before; if i < k < £ < j, then (i, k), (¢, ), (k, j), (¢, 7) do as well;
if k <i < ¢, then (k,i) and (i, /) both switch their inversion status for a net change of (—1)2; and (k, ¢) has
opposite inversion status, contributing the claimed factor of —1. As N(e) = 0, we see that sgn(w) = 1 if and
only if 7 can be expressed as the product of an even number of transpositions.

In light of the foregoing, we say that 7 is even if sgn(n) = 1 and odd if sgn(7w) = —1. If o can be written as
a product of r transpositions and 7 can be written as a product of s transpositions, then o7 can be written
as a product of r + s transpositions and thus sgn(on) = (—1)"* = (—=1)"(—1)® = sgn(c)sgn(n).

Since (i1 ...4,) = B+ B2 with 8y = (i1 i), we see that every r-cycle contributes a factor of (—1)"~1, so we

can write sgn(m) = (—1)(™) with E(x) the number of even length cycles in the complete factorization of .

Example 1.6. Though our focus here is primarily on finite groups, there is a class of infinite groups that
will be crucial to our study of representation theory: The general linear group associated with a vector space
V', denoted GL(V), consists of all bijective linear transformations from V' to itself, and the group law is

composition of mappings.

We will primarily be concerned with finite-dimensional vector spaces over C, and if V' is a complex vector

a
space with basis {by,...,b,}, we can identify it with C" via the map (a1by + - + a,b,) — [ : ] .

an

Under this identification, GL(V) & GL,,(C) is the set of invertible n x n complex matrices under ordinary

matrix multiplication.

(IFT : V — V is linear, then T(a1by+- - +anby) = a1T(b1)++ - —+anT(by) = [T(by) - T(bn)} 1)
Qn,
Since a square matrix is invertible if and only if it has a nonzero determinant and det(AB) = det(A) det(B),

this does indeed define a group. Of course, matrix multiplication is not commutative in general, so GL(V)

is nonabelian when dim (V') > 1.



If ) # H C G satisfies the group axioms under the inherited operation, we say that H is a subgroup of G,
written H < G.

To check that H < G, it suffices to show that if a,b € H, then ab™! € H.

Indeed, given a € H, taking b = a shows that e = aa~! € H; taking a = e, b = a shows that a~! € H; and
for any ¢ € H, taking b = c¢~! shows that ac € H.

If H is finite, it’s enough to check that ab € H for all a,b € H since closure ensures that b= = b°(®»)~1 ¢ H.
Note that we always have the trivial subgroups {e} and G itself.

Given a subset S C G, we write (S) for the smallest subgroup of G which contains S. (By definition, the
intersection of subgroups of G is itself a subgroup, so one can unambiguously define (S) to be the intersection
of all subgroups containing S.)

Example 1.7. An important example is the subgroup generated by a single element ¢ € G, defined by
(9) ={g,9% -+ ,g™} with m = o(g). Note that ¢g’¢’ = g* where i + j = k in Z/mZ. As such, we say that
(g) is a cyclic subgroup of order m.

Observe that if (r,;m) = d, then o(g") = m/d since g"°9") = (¢")°9") = ¢ implies m|ro(g") and thus
m/d|o(g"), and (7)™ = (¢™)"/% = e implies o(g") | m/d. The group (g) is thus generated by any element
of the form g* with (m,t) = 1.

Example 1.8. Recall that permutations in S,, can be classified according to their parity. If we set A, =
{0 €S, : sgn(c) = 1}, then the fact that sgn(on) = sgn(co)sgn(r) shows that sgn(o)sgn(oc~!) = sgn(e) = 1,
hence sgn(oc=1) = sgn(o). Accordingly, if 0,7 € A, then sgn(o7~!) = sgn(o)sgn(r) = 1, hence o771 € A,
and we conclude that A, < S,,. (We call A4,, the alternating group.)

Example 1.9. Subgroups of GL, (C) include the unitary group U,(C) = {A € GL,(C) : A*A = I}, the
special linear group SL,(C) = {A € GL,(C) : det(A) = 1}, and the group of upper-triangular matrices
To(C) = {A € GL,(C): A;j =0fori> j}.

Indeed, if A, B € U,(C), then (AB~Y)*(AB~!) = (BA*)(AB*) = I. That SL,(C) < GL,(C) follows from
det(AB) = det(A) det(B), and it is straightforward to check that products and inverses of upper-triangular

matrices with nonzero diagonal terms are upper-triangular and invertible.

When n = 1, we often write C* = GL1(C) for the group of nonzero complex numbers under multiplication

and T = Uy (C) = {e" : § € [0,2m)} for the ‘circle group’ of complex numbers with unit modulus.

One can also consider matrix groups over subfields of C. For instance, SL,(R) is the group of linear

transformations from R"™ to itself that preserve volume and orientation.

Given a subgroup H < G and an element a € G, we define the left coset aH = {ah : h € H} and the right
coset Ha = {ha : h € H}. The following example shows that left and right cosets do not necessarily agree.

Example 1.10. In S3, the subgroup H = ((12)) has 3 left cosets:
H={(1),(12)} = (12)H,

(13)H = {(13), (123)} = (123)H,

(23)H = {(23), (132)} = (132)H.
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The right cosets are
H={(1),12)} = (12)H,
H(13) = {(13), (132)} = H(132),
H(23) = {(23),(123)} = H(123).

A fundamental observation about cosets is that they partition the ambient group into equally sized parts.

To see this, note that a ~ b if a='b € H is an equivalence relation since a 'a = ¢ € H, a~'b € H implies
b=la=(a"'b)"t € H,and a='b € H, b='c € H implies a~tc = (a7 'b)(btc) € H.

The equivalence classes are the left cosets of H since a='b € H iff b € aH, and they all have the same size
because the map h — ah is a bijection from H to aH.

Clearly g € gH for all g € G and gH = H if and only if g € H. (Right coset analogues of all these results

hold by parallel arguments, but unless otherwise specified, “coset” means “left coset” henceforth.)

If G is finite and the distinct cosets of H are a1 H,...,a;H (in which case we say that the set {ai,...,a;:}
forms a transversal of H in G), then the preceding shows that |G| = a1 H| + -+ |a,.H| =t |H|.

The number ¢ of distinct left cosets of H is called the index of H in G, denoted [G : H] = |G|/ |H|.

(The index is defined for infinite groups as well. For instance, the additive groups 2Z < Z < R have
[Z:27Z) =2 and [R:Z] = o0.)

An upshot of this observation is Lagrange’s theorem that the order of any subgroup must divide the order

of the group. Specializing to the subgroup (g) shows that o(g) | |G| for all g € G.

Theorem 1.2 shows that the converse of Lagrange’s theorem holds for abelian groups, and Example 1.25

shows that it does not hold in general.

Example 1.11. If |G| = p with p prime, then the only possible orders of subgroups of G are 1 and p. Thus
for any g € G\ {e}, (9) = G, hence G is cyclic.

Another useful way to partition a group is conjugacy: For any group G and any g € G, the map a — gag™*

is called conjugation by g. This defines an equivalence relation on G via h ~ k if h = gkg~! for some g € G.

-1

Indeed, x = exe 1 if z = gyg~ !, then y = g~ lwg; and if z = gyg~', y = hzh ™!, then 2 = (gh)z(gh)~*

We write cl(g) for the conjugacy class containing g.

Example 1.12. The cycle type of a permutation 7 € Sy, is (A, ..., Ag) if its complete factorization into cycles
of nonincreasing length consists of a Aj-cycle, followed by a As-cycle, etc. For instance, (15)(28)(3496) € Sy
has cycle type (4,2,2,1). Equivalently, we can define the cycle type of 7 as [112°2 ... n"] where ¢ is the
number of k-cycles. For the sake of conciseness, we generally drop terms of the form k% whenever ¢, = 0,
so that (15)(28)(3496) has cycle type [112241].

Now suppose 3 = (i1 ...i,,) is an m-cycle in S, > 0. If 0~ 1(]) = zT, then (c8071)(j) = 0 (B(ir)) = (ir41),
and if 071(j) =k ¢ {i1,...,im}, then (0807 1)(j) = o (B(k)) = = j. It follows that ¢30~! maps o(i,)

1y hence 0(11 cdp)o Tt = (o(ir) .. o(im)).

As any m € S, can be completely factored as a product of disjoint cycles, m = 8135 - - - B has the same cycle

V=opo tofao™t - ofro?

to o(iy+1) for r =1,...,m and fixes all other elements of [n

type as omo ™



Conversely, suppose that m and v both have cycle type (A1,...,Ax), and let T and 7§ be the permutations
whose one-line notations are given by dropping the parentheses in the complete factorizations of = and ~y
into cycles of nonincreasing length. (To avoid ambiguity in this definition, one could adopt the convention
that cycles begin with their least element and cycles of equal length are ordered lexicographically.) Then

the preceding analysis shows that v = omo~! with o = 371

The conjugacy classes of S, thus consist of all elements having the same cycle type, so the number of
conjugacy classes is the number of partitions of n. The size of the conjugacy class consisting of all elements

of cycle type [1€12¢2 .- . n®n] is
n!

HZ:l e ker '

(There are n! ways to order the numbers in [n] and the cycle type determines placement of parentheses. But
this overcounts since there are €;! ways to permute the k-cycles amongst themselves and k ways to cyclically

shift the terms within each of the ¢ k-cycles.)

Suppose that G is a group with multiplication denoted by - and K is a group with multiplication denoted
by *. If ¢ : G — K has the property that for all g,h € G, ¢(g-h) = v(g) * ¢(h), then we say that ¢ is a

homomorphism.

Writing e and ex for the identity elements in G and K, we have that ¢p(eq) = p(eg - eq) = pleg) * p(eq),
—1

hence p(eq) = ex. Also, for any g € G, ex = @(ec) = @(g-971) = @(g) *p(g7") thus p(g7") = ¢(9) 7",
the inverse of ¢(g) in K. By induction, we see that ¢(g") = ¢(g)" for all n € Z.

If ¢ is also bijective, then it is called an isomorphism, and we say that G and K are isomorphic, written
G = K. Isomorphic groups may differ as sets and in terms of other structural properties like ordering or
topology, but from a group theoretic perspective, they are the same.

For instance, if ¢ : G — K is an isomorphism and H < G, then for all k1, ks € ¢(H), there are hy, ho € H
with @(h;) = ki, s0 kiks t = o(k1)p(ka) ™' = p(h1hy ') € @(H). That is, isomorphisms map subgroups to
subgroups, necessarily of the same size.

Similarly, suppose that G is abelian and let x,y € K. If ¢ : G — K is an isomorphism, then there exist
g9,h € G with ¢(g) = x and ¢(h) =y, hence zy = @(g)p(h) = ©(gh) = ¢(hg) = ¢(h)e(g) = yz, so K is
abelian as well. (We generally don’t bother emphasizing the different group operations, identities, etc. when

it is clear from context.)

Example 1.13. If ¢ € G has o(g) = m, then the map ¢ : Z/mZ — (g) defined by ©(j) = ¢’ is an

isomorphism; the latter group is the former in disguise. Similarly, x — €27%* shows that [0,1) = T.

If ¢ : G — K is a homomorphism, then it is routine to show that the kernel ker(¢) = {g € G : ¢(g) = e} is
a subgroup of G and the image Im(p) = {k € K : k = ¢(g) for some g € G} is a subgroup of K.

Note that ¢ is injective if and only if ker(¢) = {e} since ¢(g) = ¢(h) if and only if e = (gh™1).
By definition, surjectivity of ¢ is equivalent to Im(y) = K.

Example 1.14. Example 1.8 shows that sgn is a homomorphism from S,, to C*. The image is U;(R) and
the kernel is A,,. Likewise, det defines a surjective homomorphism from GL,,(C) to C* with kernel SL,,(C).
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Observe that if ¢ : G — K is a homomorphism, g € G, and h € ker(p), then p(ghg™") = ©(g)ep(g) ™ =e,
so ghg™t € ker(p) as well.

We say a subgroup N < G is normal (written N < G) if it is closed under conjugation by any element of G.

The preceding observation shows that kernels of homomorphisms are always normal subgroups.

Clearly all subgroups of abelian groups are normal as well, but Example 1.10 demonstrates that not all
subgroups are normal. Indeed, if N <t G and h € gN, then there is some y € N with h = gy = gyg~'g = 2g
where z = gyg~! € N. This shows that gN C Ng, and since both have cardinality |N|, they must be equal.

Conversely, if gN = Ng for all ¢ € G, then for any n € N, g € G, gn = n’g for some n’ € G, hence
-1

gng~t =n' € N. Thus an equivalent characterization of normality is that gN = Ng for all g € G.
Example 1.15. If H < G has [G : H] = 2, then G = H| |aH for any a ¢ H. Thus for any h € H, g € G,
either g € H, hence ghg™' € H, or g = ak for some k € H, hence ghg~! = (ak)h(ak)™' = ah’a™! for
h' = khk~—! € H. Tt follows that ghg~' € H in this case as well since the alternative implies ah’a™! = ax
for some = € H, giving the contradiction that a = z='h’ € H. Thus we see that index 2 subgroups are
necessarily normal. As a concrete example, A,, <15, since it has two cosets, the even an odd permutations.
(This also follows from the fact that A, = ker(sgn).)

Example 1.16. If K < H < G and K < G, then K < H since gKg~! = K for all g € G and thus for all
g € H. However, we may have that K << H and H < G without K being normal in H.

For instance, in Ay, the subgroup V = {(1), (12)(34), (13)(24), (14)(23)}, which is readily seen to be isomor-
phic to the Klein four-group, is normal since conjugation preserves cycle structure. Also, W = {(1),(12)(34)}
is normal in V because it has index 2. However, W is not normal in A, since, for example, (123)W (123)~! =
{(1),(14)(23)} # W.

If H happens to be a cyclic normal subgroup of G, then every subgroup K < H is also normal in G. To see
this, note that our assumptions imply that there is an h € G such that H = (h) and K = <hk> where k is
the smallest positive integer with h* € K. Normality of H shows that for any g € G, h/ € H, ghlg~! = h™
for some m € Ny. Thus for any h'* € K, gh?*g=' = (gh/g~)F = h™* € K.

To further explore the notion of normality, define a product on the collection of nonempty subsets of G by
AB ={ab: a€ Abe B}. (When A= {a} and B < G, AB = aB is the left coset of B containing a.)

This operation is associative by definition of multiplication in G, and it satisfies HH = H for all H < G.

If H K < @, we might hope that HK < G as well, but this turns out to be overly optimistic in general.
For instance, in Ss, if H = ((12)) and K = ((23)), then HK = {(1),(12),(23), (123)}, which cannot be a
subgroup since 4 1 6.

However, if subgroups satisfy HK = K H, then for all hy,he € H, k1,ks € K, we have in obvious notation
(h1ky)(hoka) ™ = hikiks *hyt = hikshy ' = hihsky = huks € HK, so HK = KH is a subgroup of G.

In particular, if H, K < G with K < G, then for any h € H, k € K, k' = hkh~ ' k" = h~'kh € K, thus
hk = hkh='h = k’h and kh = hh~'kh = hk”. This shows that HK C KH and KH C HK, hence HK < G

by the previous observation.
If H <1 G too, then for any g € G, h € H, k € K, g(hk)g~! = (ghg=')(gkg™!) =Wk’ € HK,so HK < G.
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For N < G, let G/N denote the family of left cosets of N. Then for all a,b € G, (aN)(bN) = (ab)N, and
G/N forms a group under this product.

The first claim is because (aN)(bN) = a(Nb)N = a(bN)N = (ab)NN = (ab)N. Note that the product does
not depend on the choice of coset representatives: If aN = a’ N and bN = &' N, then (ab)N = (a’b')N.

Now this product formula shows G/N is closed under multiplication, which we already know to be associative.
Since (aN)N = aN and N(aN) = N(Na) = Na = aN, we see that N = eN serves as the identity. Since
(aN)(a IN) = (aa"')N = N and (a"'N)(aN) = (a~ta)N = N, the inverse of aN is a1 N.

The group G/N is called a quotient group. Its order is [G : NJ, so if G is finite, then |G/N| = |G| /|N].

Observe that if N < G, then the natural map 7 : G — G/N defined by 7(g) = gN defines a homomorphism
with ker(7) = {g € G : gN = N} = N, providing a converse to our previous observation that kernels of

homomorphisms are normal subgroups.
In fact, up to isomorphism, the homomorphic images of G are precisely its quotients by normal subgroups.

Theorem 1.1 (First Isomorphism Theorem). If ¢ : G — K is a homomorphism, then ker(p) < G and
G/ker(p) = Im(yp).

Proof. Normality of N = ker(y) has already been established. The map ¢ : G/N — Im(p) given by
P(gN) = ¢(g) is well-defined because ¥(gN) = ¢(g) € Im(p) for all g € G, and if gN = ¢'N, then g = ¢'n
for some n € N, hence ¢(gN) = ¢(g) = ¢(g9'n) = ¢(g')¢(n) = ¢(g') = ¥(g'N).

Since ¢ is a homomorphism and N is normal, »(¢NhN) = ¥(ghN) = o(gh) = p(g)p(h) = Y(gN)Y(hN),
thus ¢ is a homomorphism. It is surjective because if k& € Im(y), then k = ¢(g) = ¥(gN) for some g € G,
and it is injective because ex = ¥ (gN) = ¢(g) implies g € ker(p) = N, hence gN = N = eq/n. O

Remark 1.1. See the appendix for isomorphism theorems two, three, and four.

Example 1.17. Suppose that n = 2m for some integer m > 2. Then the dihedral group D,, has 2 conjugacy
classes of size 1, {1} and {r™}; m—1 of size 2, {r**} for k = 1,...,m—1; and 2 of size m, {r?*s : 1 <k < m},
{r?k=1s:1 <k < m}. This follows from rirJ = r*J and r¥s = (r¥s)~! = sr=*, hence

rirky=d =k, (ris)rk(ris) = rF,
risr™ =r?s = (ris)s(ris),
ri(rs)r=9 = r¥tls = (17s)(rs)(rs).

The proper normal subgroups of D,, are thus the cyclic groups <rd> with d | n and the dihedral groups
(r?,s) and (r?,rs). The former is because (r) is a subgroup of index 2 and all subgroups of a cyclic normal
subgroup are normal. For the latter, note that if a normal subgroup IV contains a reflection, then it contains
all reflections of the same parity by the conjugacy calculations above. As N also contains the identity, we
must have |N| > n/2, hence [D,, : N] = 2n/|N| < 4. Since N is proper and (s,rs) = D,, it can only contain
half of the reflections, and since any reflection outside of N has order 2 in D, /N, [D,, : N] must be even.
It follows that |N| = n. Because n/2 of the elements are reflections, the remaining must be rotations, and
taken together, they generate a cyclic subgroup of order n/2, the only one of which is <r2>. As <r2, s> and

<r2, rs> are the only subgroups satisfying these requirements and both have index 2, the assertion follows.
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The fourth isomorphism theorem establishes a nice correspondence between subgroups of G/N and subgroups

of G containing N that can be harnessed to prove a converse to Lagrange’s theorem for abelian groups.
Theorem 1.2. If G is a finite abelian group with order divisible by d, then G has a subgroup of order d.

Proof. We first show that if |G| = mp with p prime, then G has an element of order p. Example 1.11
establishes this claim when m = 1. Assume for the sake of induction that the statement holds for all integers
1 <m < n, and let G be an abelian group of order np. Choose an element a # e so that k = o(a) > 1. If
k = jp, then o(a?) = p. Otherwise, H = (a) is a normal subgroup and |G/H| = n/k is divisible by p, so the
inductive hypothesis guarantees the existence of some bH € G/H with order p. If o(b) = m, then we must
have that (bH)™ = b™H = H, so m = £p and o(b") = p.

Now suppose that d divides |G| and let p be a prime divisor of d. Then there is a normal subgroup S = (g)
of order p so that |G/S| = n/p. By induction on |G|, G/S has a subgroup H' of order d/p and Theorem 7.5
shows that H' = H/S for some S < H < G. Since d/p = |H'| = |H| /p, we have proved the claim. O

Observe that for any group G, the map ¢, : G — G given by p4(h) = ghg™' is an isomorphism for
each g € G since for any h,k € G, p,(hk) = ghkg™ = ghg='gkg™" = p,(h)p,(k), p,(g'hg) = h, and
e =py(h) = ghg™"! implies h = g~ leg = e.

Isomorphisms from a group to itself are termed automorphisms, and the collection Aut(G) of automorphisms
of G forms a group under function composition. Indeed, if ¢, 0 € Aut(G), then for any z,y € G, there exist
g9,h € G with ¢(g) = z and ¢(h) =y, so ¢~ (zy) = ¢ ((9)p(h)) = ¢~ (p(gh)) = gh = ¢~ (x)p™ " (y)
and ¢(0(zy)) = ¢(0(x)0(y)) = ¢(0(z))¢(0(y)). The claim follows since inverses and compositions of

bijections are bijections, and the identity map serves as eau(q)-
Because the conjugation maps satisfy ¢4 (pn(z)) = @g(hah™') = g(hzh™')g™' = (gh)z(gh) ™' = @gu(z),

we see that Inn(G) = {¢, : g € G} forms a subgroup of Aut(G) called the group of inner automorphisms.
(By construction, ¢ 1 and @, is the identity.) It’s normal since for any 6 € Aut(G), we have

= (pg,
Opy0 1 (x) = 090~ (x)g™ 1) = 0(9)20(g™ 1) = pa(g) ().

In general, a homomorphism is a structure preserving function. It’s an isomorphism if bijective and an

automorphism if the domain and range coincide.

Given a set X, we can define Auty(X) to be the collection of bijections from X to itself, which is easily seen
to form a group under function composition. If | X| = n, we can label the elements z1,...,z,, and one can

check that the map f : S,, — Auto(X) given by f(7)(zx) = Tx(r) is an isomorphism.
Note that if G is a group, then Aut(G) < Auto(G) and the inclusion is generally strict.

Now a group G is said to act on a set X if there is a homomorphism ® : G — Auto(X).
Alternatively, we can define a group action as a function ¢ : G x X — X that satisfies p(e,z) = x and
©(gh,x) = p(g,p(h,z)) for all z € X, g,h € G.
These definitions are seen to be equivalent under the identification ¢(g,-) = ®(g).
(Verification of this claim is routine. For instance, ¢(g,-) : X — X is 1-1 since ¢(g,z) = ¢(g,y) implies
z = ¢lg7'9,7) = o9 p(g.2)) = (97" ¢(9.9)) = (97 g,y) = y. Similarly, if (g, ) = y, then
el y) =097t 9(9,7)) = ¢(g7 g, 2) = o, hence p(g,-) "' = ¢(g7,).)
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In addition to abstracting fundamental properties of many common mathematical constructs in order to
suggest analogies, establish sweeping results, and illuminate aspects otherwise obscured by extraneous details,

a key feature of groups is that they encode symmetries via their actions on sets.

To give some examples, S,, acts on [n] by permuting its elements, ¢(o,n) = o(n); GL(V) acts linearly on V
by o(T,x) = T'(x); and D,, acts on the vertices of a regular n-gon by rotation and reflection.

If &: G — Auto(X) is injective, we say that the action is faithful. Equivalently, the action ¢ : G x X — X
is faithful if p(g,z) = « for all z € X implies g = e.

A stronger property is that ¢(g,x) = « for some x € X implies g = e, in which case the action is called free.

Finally, if for every z,y € X, there is a g € G with ¢(g,x) = y, then the action is said to be transitive.

Example 1.18. Every group acts on itself by conjugation since the map ¢ : G x G — G defined by
(g, h) = ghg™" satisfies p(e, h) = h and @(gh, k) = (gh)k(gh)~" = g(hkh~")g~" = ¢(g, 0(h. k).

This action is not transitive if |G| > 1 because, for instance, the identity is not conjugate to anything else.
It is also not free in this case since ¢(h,h) = h for all h € G.

It is faithful if and only if Z(G) = {g € G : gh = hg for all h € G} consists only of the identity—for example,
when G = S,, with n > 2.

Example 1.19. G also acts on itself by (left) translation since the map 7 : GXG — G defined by 7(g, h) = gh

clearly satisfies the definition.

(Note that if g # id, then 7(g, hk) = ghk # ghgk = 7(g,h)7(g,k), so 7(g, -) does not define a homomorphism
from G to itself; it is an automorphism in the category of sets, but not groups.)

This action is transitive since for any g,h € G, 7(hg=',g) = h, and it is free (and thus faithful) since

)

h =7(g,h) = gh implies g = e.

If |G| = n, writing 7, for the automorphism 7,4(k) = 7(g,k), we have 7,(7,,(k)) = 74(hk) = (gh)k = T4n(k),
S0 g — T, is a homomorphism from G to Auto(G) = S,,. Since the kernel is trivial, this shows that G is

isomorphic to a subgroup of S,,, a fact known as Cayley’s theorem.

Example 1.20. An action ¢ : G x X — X induces an action of G on Y = {functions from X to Y}
defined by ¢(a, f)(z) = f(p(a~t,2)). This follows from @(e, f)(z) = f(¢(e,x)) = f(z) and

G(ab, f)(z) = f(e(d " a ™ 2) = f ((b7 0l 2)) = 3(b, f) (pla™", 2) = 5(a, @b, £)) ().

Given a group action ¢ : G x X — X, the orbit of x € X is the subset of X defined by
O(z)={y € X : y=¢(g,z) for some g € G}

Since x ~ y if y € O(x) is easily seen to be an equivalence relation, the orbits partition X. The action is

transitive if and only if there is a single orbit.

The stabilizer of x € X is the subset of G defined by
Go={9€G: ¢(g,7) = z}.

If g, 1 € Gy, then o = p(h™'h,z) = ¢(h ", p(h,z)) = p(h ", 2) and p(gh, z) = ¢ (g, o(h, ) = ¢(9,2) =z,
so we see that G, < G. The action is free precisely when all stabilizers are tivial.
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Example 1.21. If ¢ : Gx X — X is a group action and y € O(z), then there is some g € G with ¢(g,2) = .
It follows that for any h € G, ¢(ghg™".y) = w(gh,¢(97",y)) = w(gh,z) = ¢(g.(h,2)) = w(g,2) =y,
thus ghg™! € G,,. Likewise, if b’ € G, then p(g7'h'g,z) = (g W, y) = (g7, y) = z.

We conclude that the stabilizer subgroups of elements in a common orbit are conjugate.

Example 1.22. If G acts on itself by conjugation, then the orbit of z € G'is O(z) = {gxg~' : g € G} = cl(x),
and the stabilizer is G, = {g € G : grg~! =} = Cg(x), the set of elements that commute with z.

More generally, given S C G, we can define the centralizer Cq(S) = {g € G : gsg~! = s for all s € S} and
the normalizer Ng(S) = {g € G : gSg~! = S}.

One readily checks that C(S) < Ng(S) < G for all S C G. If S < @G, then for any a € Ng(S5), b € Ca(5),
s € S, writing t = a"'sa € S gives (aba"1)s(aba=1)"! = (ab)(a"'sa)(ab)™! = a(btb™!)a"t = ata”! = s,
hence Og(S) < Ng(S)

We say that Z(G) = Cg(G) is the center of G. Since zg~! = g~ 'z and thus gzg~! = z for all x € Z(G),
g € G, we see that H < Z(G) implies H <1 G.

To simplify notation going forward, we write gx = ¢(g,«) when no confusion is likely to arise. With this
convention, the defining properties are ex = z and (gh)z = g(hz).

Let G/G, be the family of left cosets of G, and consider the map ¢ : G/G, — O(x) given by ¢(aG,) = ax.
This is well-defined since aG, = bG,, implies a='b € G, so ¢(bG,) = bx = a(a='b)z = ax = ¢(aG,), and it
is surjective since y € O(z) implies y = ax = ¢(aGy) for some a € G. It’s injective since ¢p(aGy) = ¢(bGy)
implies (a~'b)z = x and thus aG, = bG.,.

Since ¢ is a bijection, we have |O(z)| = |G/G| = [G : G]. If G is finite, then |O(z)| = |G|/ |G|, a result

known as the orbit-stabilizer theorem.

Example 1.23. Suppose that a finite group G acts on some set X. Write X/G for the collection of disjoint
orbits in X, define X9 = {x € X : gz =z}, and set F = {(g,2) € G x X : gr = z}. On the one hand,
|[F| =3 cq |X?], and on the other,

Fl= Y (Gl = 3 i =161 30 3 st =16l Y 1-[611x/6]

zeX zeX AeX/GxzeA AeX/G

since X is the disjoint union of its orbits and « € A implies |O(x)| = |A|.

Combining these observations yields the lemma that is not Burnside’s, | X/G| = |—Cl;‘ >_geq [ X?]. In words,
the number of orbits is equal to the average number of fixed points.

We have seen that when G acts on itself by conjugation, the orbits are the conjugacy classes and the stabilizers
are the centralizers. The orbit-stabilizer theorem thus implies that |cl(z)| = [G : Cg(z)] divides |G| if the

latter is finite.

Now z € Z(G) iff cl(x) = {«}, so if {x;};es are representatives of the conjugacy classes having size greater

than one, expressing G as the disjoint union of its conjugacy classes yields the class equation

Gl =12(G)| + ) lel()].

el
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Example 1.24. If |G| = p* for some prime p and positive integer k, then for each € G\ Z(G), Cg(z)
is a proper subgroup of G, so |cl(x;)| = [G : Cg(z)] is divisible by p. The class equation then implies that
|Z(G)| is divisible by p, so the center is nontrivial.

As such, when k = 2, we must have |Z(GQ)| € {p,p*}. If |Z(G)| = p, G/Z(G) has order p and thus is cyclic,
say G/Z(G) = (hZ(@Q)). This means that for any = € G, Z(G) = h™Z(G) for some m, hence x = h"™z for
some z € Z. Thus if 2,2’ € G, then xa’ = h™zh™ 2/ = 2’k zh™ = 2/h™ h™mz = k™ 2/h™z = o'z, so G is
abelian, contradicting Z(G) a proper subgroup of G. We conclude that |Z(G)| = p?, hence G = Z(G).
Note that while groups of prime or prime-squared order are necessarily abelian, the dihedral group Dy is

nonabelian of order 23.

We can also use the class equation to give a nice proof of Sylow’s theorem on the existence of subgroups of

prime power order. The argument is similar to and relies upon Theorem 1.2.

Theorem 1.3 (Sylow I). If p is prime and p* divides |G|, then G has a subgroup of order p*.

Proof. We proceed by strong induction on |G|, observing that the G = {e} case is vacuously true. For
the inductive step, suppose first that p divides |Z(G)|. Then Theorem 1.2 shows that Z(G) and thus G
has a (necessarily normal) subgroup H of order p, and the inductive hypothesis ensures that G/H has a
subgroup K of order pk_l. Theorem 7.5 guarantees the existence of some H < K’ < G with K'/H = K
and |K'| = |G| /[G : K'] = |G/H]| |H| /[G/H : K] = |H| K| = p.

If p does not divide | Z(G)|, then p does not divide some |cl(z;)|, so Cq(z;) is a subgroup of order |G| / |cl(z;)|,
which is less than |G| and divisible by p*, thus Cg(z;) contains a subgroup of order p* by the inductive
hypothesis. ]

Remark 1.2. The k =1 case of Theorem 1.3 shows that any group with order divisible by a prime p has an

element of order p, a result known as Cauchy’s theorem.

A (sub)group in which the order of every element is a power of a prime p is called a p-(sub)group.

For finite (sub)groups, this is equivalent to having order a power of p: Lagrange’s theorem ensures that
the order of every element divides the order of the group, and if ¢ is a different prime divisor of the order,

Cauchy’s theorem gives an element of order g.

If p* divides |G|, but p**! does not, we say that a subgroup of order p* is a p-Sylow subgroup of G. The first
Sylow theorem guarantees that such subgroups always exist, and Sylow theorems two and three give further

details about their nature and number.

Our next example establishes the important fact that if n > 5, then A,, is simple—that is, it has no nontrivial
proper normal subgroups. This implies in particular that it has no subgroup of order |4, | /2, showing that

Theorem 1.2 does not extend to arbitrary groups.

Example 1.25. Let n > 5. We will establish simplicity of A, by showing that it is generated by 3-cycles,
all of which are conjugate in A,,. We then argue that a nontrivial normal subgroup of A,, contains a 3-cycle.

It follows that it contains all 3-cycles and thus all of A,,.
Our proof makes use of the general observation that if N < G, n € N, and g € G, then N necessarily
contains the commutator [g,n] = gng n"1.
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We first note that every o € A,, can be factored as ¢ = 7,75 - - - 79, for some adjacently distinct transpositions
T1,...,Tor. For each s € [r], either 7051 = (ij), 725 = (j k) for distinct ¢, j, k and thus mo5_172s = (i k),
or Tos—1 = (14), T2s = (k) for distinct 4, j,k, ¢ and thus 1os_172s = (15)(Jk)(Gk)(k€) = (ijk)(jk{). This
shows that every permutation in A,, can be expressed a product of 3-cycles.

To see that the 3-cycles are all conjugate in A,,, observe that for any 3-cycle [, there is some o € S,, with
oBo~1 = (123) because all elements of a given cycle type are conjugate in S,. If 0 € A,, we are done.
Otherwise, ¢ = (45)0 € A, and 7351 = (45)(123)(45) = (123). (Note the we needed n > 5 for this

argument to work.) The assertion follows since conjugacy is symmetric and transitive.

We now embark on an induction proof of the claim. For the base case, suppose that N is a nontrivial
normal subgroup of A5 and 7 is a nonidentity element of N. If 7 is a 3-cycle, then we are done. Otherwise,
evenness implies that 7 is of the form (i j)(k ¢) or (¢ j k¢m) for distinct 4, j, k, £, m. In the first case, N must
contain [(i jm), (i j)(k0)] = (i jm)(ij)(k£)(mji)(ij)(k€) = (imj), and in the second case N must contain
[(ijk),(ijktm)] = (ijk)(ijkem)(kji)(mlkji)=(ijl).

Now suppose that A,, is simple for some fixed n > 5. For each i € [n+1], define H; = {0 € Apq1: 0o(i) =i}
so that H; is a subgroup of A, that is isomorphic to A,, and thus is simple by the induction hypothesis.
Let N be a nontrivial normal subgroup of A,; and choose some m € N \ {(1)} It suffices to show that
there is an ¢ € [n + 1] with 7(¢) = ¢ since this implies that N N H; is a nontrivial normal subgroup of the

simple group H; and thus equals H;. As H; & A,, contains a 3-cycle, N does as well, hence N = A,,41.

To this end, let j, k,¢ € [n + 1] be distinct with 7(j) = k and w(k) # ¢, and set 0 = (jk{) € Any1.
Then [r,0] = (mon Y)o~! = (n(j)7(k)7(£))(¢kj) is not the identity and fixes all points outside of
{i,4,k,7(i),7(j), m(k)}. Since m(j) = k, this set has cardinality less than 6 < n + 1, hence [r,0] € N

has a fixed point and the proof is complete.

Simple groups are important as they may be regarded as the basic building blocks for all finite groups via the
Jordan-Hélder theorem, and the simplicity of A, is at the heart of the insolvability of general polynomials

by radicals addressed in Galois theory.

While we do not need to go into these details here, the process of building new groups from old will be

important in what follows.

If H and K are groups, we define their (external) direct product H x K to be the set of all ordered pairs
(h,k) with h € H and k € K equipped with the operation (h1,k1)(he, ke) = (hiha, k1, k2). This is easily
seen to define a group with identity (em,ex) and inverses (h, k)1 = (h=1 k~1).

Clearly |H x K| = |H||K|, and the map (h,k) — (k, h) shows that H x K 2 K x H.

Moreover, the projection maps 1 ((h,k)) = h and m2((h, k)) = k define isomorphisms from the subgroups
{(h, ex): he H} and {(eH, k): ke K} to H and K, respectively. These subgroups are normal since, for
instance, (h, k)(ho,ex)(h, k)™t = (hhoh™}, ek).

Note too that if ¢ : H — H' and ¢ : K — K’ are isomorphisms, then the map (h, k) — (gp(h), ¢(k)) shows
that H x K =2 H' x K'.

If N < G and N’ < G’, then the function ¢ : GxG' — (G/N) x (G'/N’) defined by ¢((g,9')) = (gN,g'N’) is
readily seen to be a surjective homomorphism with kernel N x N’, so Theorem 1.1 tells us that N x N’ <« Gx G’
with (G x G")/(N x N') 2 (G/N) x (G'/N").
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There is a related construction that allows one to factor a group as an internal direct product of normal
subgroups: If H, K < G with HNK = {e} and HK = G, then G 2 H x K.

The assumption that HK = G ensures that every g € G can be written as g = hk for some h € H, k € K,
and this decomposition is unique since h1k; = hoko implies h;lhl = kgkfl € HNK = {e}. Assuch, the map
¢ : Hx K — G defined by <p((h, k:)) = hk is bijective. To see that it is a homomorphism, note that if h € H,
k € K, then [h,k] = (hkh=1 )k~ € K and [h, k] = h(kh='k~') € H, hence hkh~ 'k~ = e or hk = kh.
Accordingly, gp((hh k1) (ha, kg)) = <p((h1h2, k‘lkg)) = hyphoki1ke = hikihoks = Lp((hl, kl))go((h27 k:g))

Direct products can be regarded as a partial inverse to taking quotients: If G is the internal direct product
of H, K < G, then it must be the case that K = G/H since the map hk — k is a surjective homomorphism
from G to K with kernel H.

Example 1.26. Suppose that (m,n) = 1 and denote the congruence class of a € Z modulo k by [a].
Since [ably = [a]k[b]k, the map ¢ : Z — (Z/mZ) x (Z/nZ) given by ¢(a) = ([a]m,[a]n) is a surjective
homomorphism. The kernel is mnZ because ¢(a) = ([O]m, [O}n) if and only if m,n | a, if and only if mn | a.
Therefore, the first isomorphism theorem tells us that (Z/mZ) x (Z/nZ) = Z/mnZ.

Observe that if (m,n) = d > 1, then (Z/mZ) x (Z/nZ) is not isomorphic to Z/mnZ since every element of
the former has order at most mn/d and the latter contains an element of order mn.

Example 1.27. Suppose that H, K < G with G finite. Then H x K acts on HK C G by (h,k)x = hak~ .
This action is transitive since for any = = hiky, y = hoko, (hgh;17k51k1)l’ = y, thus there is a single
orbit. Since the stabilizer of the identity is G. = {(h,k) € H X K : h = k} = {(z,2) : € HN K}, the
orbit-stabilizer theorem shows that |HK|= |H x K|/ |G.| = |H||K|/|H N K]|.

One can extend the external direct product construction to more than two groups by defining G; x - -+ x G,

to be the Cartesian product of Gy,..., Gy with coordinatewise multiplication.

Since ((g15---,9n), Gnt1) = (g1, - - -, Gn+1) is an isomorphism from (Gy X+ -+ x Gp,) X Grpq t0 G1 X+ X G,
we can generalize the many of the preceding results by induction.

For example, if Hy << G, for k=1,...,n+ 1, then

(Gy X -+ X Gpy1)/(Hy X -+ X Hpy1) 2 [(Gy X -+ x Gp) X Gpa]/[(Hy X -+ X Hyp) X Hyy1]
= [(Grx-- - x Gn)/(Hy X oo X Hy)] X (Grgr /Hngr)
= (G1/Hy) % -+ X Gyt /Hns).

Similarly, if n = nq -+ - ng with nq,...,ng pairwise coprime, then Z/nZ = (Z/n2Z) x - -- x (Z/nZ).

We say that G is the internal direct product of Hi, ..., Hy < G if the map ¢ : H; X --- X Hy — G defined
by go((hl, . hk)) = hy - - hg is an isomorphism.

An induction argument shows that this is true if and only if G = H; --- Hy, and for each ¢ € [k] we have
H; <Gand H;N(Hy---H;—1) = {e}.

Note that normality of the Hj’s guarantees that the product of any of them is itself a subgroup.

Our immediate concern is with abelian groups, in which all subgroups are normal, and it is straightforward

to establish the above assertion directly in this case:
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Suppose that ¢ is an isomorphism. Then G = H; --- Hy, by surjectivity. If h € H; N (Hy---H;—1) < G,
then h € H; and h™! € Hy--- H;_1, so there exist hq,...,h;—1 with h; € Hy and hy---h;—1 = h~1, hence
e="hy---h;_1he---e and we conclude that h = e by injectivity of ¢.

Conversely, suppose G = Hy ---Hy and H; N (Hy---H;—1) = {e} for all i. The first condition implies ¢
is surjective. Now observe that if hy---hg = e, then hy---hgp_1 = h,;l, hence hy € Hp, N (Hy -+ Hi—1),
so the second condition implies Ay = e. This in turn implies € = hy---hg_1, thus hy---hp_9 = h,;ll, SO
hg—1 € Hip—1 N (Hy -+ Hik—2) = {e}. Continuing thusly gives hy = .-+ = hy = e and we conclude that ¢
is injective. Finally, abelianity gives gp((hl, o he) (R h;c)) = <p((h1h’1, R hkhk)) = hih} - hih) =
hi---hghy---hl = go((hl, . .,hk))go(( ’1,...,h;€)).

Example 1.28. Let G be abelian of order n = p{* ---pf* with p; < --- < p; prime and ey,...,e, > 1.
Sylow’s theorem ensures that for each j € [k], there is a subgroup A; < G of order p;j . In fact, A; is the only
subgroup of this order since it’s normal and all p;-Sylow subgroups are conjugate. Writing n; = p{* - - -p;'ff,
we have |A;] = pf | n; for each i < j, soif g € Ay--- Aj 4, then g™ = A’ --- A7, = e and thus o(g) | n;.
Since any h € A;\ {e} has order p‘;(h) for some a(h) > 1, o(h) { n;. This shows that A;N(A;---A;_1) = {e}.
Now |A14s| = |A1]]|A2|/|A1 N As| = |A1]|A2] and if [A1---Aj_q1| = |A1]---|4,_1], then |[A;---Aj| =
[Ay - Aj_q| |4/ |(Ar - A1) NAj| = |Ar - A;q| |Aj] = |Aq| - - - |Aj]. Tt follows that Ay --- Ay < G has
order |Ay -+ Ag| = |A1|---|Ak| = |G|, hence Ay --- Ay = G.

We have thus proved that G is the internal direct product of Ay, ..., Ag.

If G is a finite abelian group and p is a prime divisor of |G|, we call G, = {z € G : zP" = e for some n > 1}
the p-primary component of G. Clearly G, is a p-subgroup of G containing the unique p-Sylow subgroup
Ap. Since the latter is a p-subgroup of maximal order, we have G, = A,. Accordingly, the factorization of

an abelian group as a direct product of its Sylow subgroups is often called the primary decomposition of G.

Note that if G and G’ are abelian groups and ¢ : G — G’ is an isomorphism, then for each primary
subgroup G, < G, ¢(G,) is a subgroup of G’ having the same order, hence the restriction of ¢ to G,
provides an isomorphism between G, and Gj,. Conversely, if G}, = G}, for each p dividing |G| = |G|, then
G =Gy X x Gy, 2Gy X+ x Gy, = G'. That is, primary decompositions of finite abelian groups are

unique up to isomorphism.

Example 1.29. Suppose that G is abelian of order p™ for some prime p and positive integer n. We will
prove by induction on n that if @ € G is an element of maximal order, then there is some K < G with
G = (a) x K. When n =1, G is cyclic so we can take a to be a generator and K = {e}. Suppose then that
the claim holds for all 1 < k < n, and let a € G be of maximal order, say o(a) = p™. This guarantees that

g?" =efor all g € G, and we can assume that G # (a) as the result is immediate in this case.

Let h be an element of minimal order in G\ {(a) and set H = (h). We will prove that (a)NH = {e} by showing
that |H| = p because then (a) N H < H must have order 1 or p and the latter is precluded by h ¢ (a). Since
G is a p-group and h # e, o(h?) = o(h)/p < o(h), hence h? € (a) by our minimality assumption on o(h).
Accordingly, h? = a” for some r > 1 and thus (a”)?" = (R?)P" ' = W?" = e. It follows that o(a”) < p™~ 1,
so a” does not generate (a), so r = ps for some s € N. Now g = a~*h does not belong to (a) since this would
imply that h = a®g € (a). Moreover, g» = a~P*h? = (a")~'h? = e. As we have exhibited an element of order
p outside of (a) and H was generated by an element outside of (a) having minimal order, we are forced to

conclude that |H| = o(h) = p.
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The next step is to show that the order of aH in G/H is o(a) = p™. Indeed, G/H is a p-group, so if |aH| < p™,
we must have H = (aH)?""’
that every g € G satisfies, g*" = e and thus (¢H)?" = ¢*" H = H, aH has maximal order in G/H. The
induction hypothesis and Theorem 7.5 thus give a subgroup K of G containing H with G/H = (aH)x (K/H).
It follows that for any g € G, there exist 1 < j < p™, k € K with gH = (aH)/(kH) = (a’k)H, hence
g = a’kh for some h € H. As H < K, kh € K, which shows that G = (a) K. Also, if b € (a) N K, then
bH € (aH)N (K/H)={H},s0 b€ (a) N H = {e}, and we conclude that G = (a) x K.

=a" " H, sothat a®" € HN (a) = {e}, a contradiction. Since we have seen

Applying this result again gives K = (a’) x K’. Since the order of the second factor decreases to 1 as the

procedure is iterated, we see that G is an internal direct product of cyclic subgroups of prime power order.

The orders of these subgroups are called elementary divisors and they are uniquely determined by G because
if Hy x---xHp, 2G = Ky x---x K, are decompositions into cyclic subgroups of nonincreasing prime-power
orders, then it must be the case that |H;| = | K| is the largest order of any element in G, hence Hy = K7,

and the other factors likewise agree by induction on |G|.

Since we can uniquely factor an arbitrary finite abelian group as a direct product of its Sylow subgroups
and then uniquely factor each of those p-groups as a direct product of cyclic groups of prime power order,
we see that every finite abelian group is isomorphic to a direct product of cyclic subgroups of prime power

order, and any such decomposition consists of cyclic groups of the same size and multiplicity.

Alternatively, an abelian group G of order p{* ---p;* can be expressed as the direct product of subgroups
Ay,..., Ay where |A;] = p;’. These primary subgroups in turn factor as direct products of cyclic groups
Oli‘j

A; = Cig XX Ci,@(i) where |C¢7j| =D,

K2

with a1 > -+ > ;) and a1 + - + g ) = €.

Let ¢ = max; £(i), set a; j = 0 for £(i) < j < ¢, and form the k x ¢ matrix E having (i, j)-entry E; ; = p;*’.
Define the invariant factors c; = Hle E;;for j=1,...,¢. Then ¢;|ci—1]|---|c1 and, by Example 1.26,
(Z)e;Z) =2 (Z)pS L) x -+ x (Z]py*?Z) for each j, hence G = (Z/c1Z) X - -+ X (Z]ciZ).

Since the elementary divisors determine the invariant factors and can also be recovered from them via prime

factorization, we see that this decomposition is also unique.

We record this observation as the fundamental theorem of finite abelian groups.

Theorem 1.4. If G is a finite abelian group, then there exist integers ci,...,c¢ such that cj|c;—1 for

j=2,....0 and G = (Z/c1Z) X --- x (Z/c¢Z). Furthermore, £ and c1,...,c; are uniquely determined by G.

Before moving on to representation theory, we briefly mention an extension of the direct product construction
that is useful for factoring groups and building new ones from old.

To wit, if K,Q < G with KNQ = {e} and KQ = G, then we say that Q is a complement of K in G.

If K <« G and @ is a complement of K in G, we say that G is a semidirect product of K by @, written
G = K x Q. (Note that we may not have Q <1 G; if so, G is a direct product of K and Q.)

Since @ is a complement of K, each g € G can be uniquely expressed as g = kq for some k € K, g € Q,

and normality of K enables us to preserve this structure under multiplication by writing (k1q1)(kege) =

(k1 - qik2qi ) (q1g2).
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If o : Q@ — G is the embedding ¢(¢) = ¢ and 7 : G — G/K is the natural map, then 7ot : Q — G/K is a
composition of homomorphisms and thus is a homomorphism. It is injective since g1 K = g2 K implies there
is some k € K with q; = g2k and thus ¢; '¢; € KN Q = {e}. Since |QK| = |Q||K|/|Q N K| =|Q||K| and
thus |G/K| = |G| /|K| =|QK]|/|K| =|Q|, 7ot must be surjective as well, hence Q@ = G/K.

Example 1.30. The dihedral group D,, is easily seen to be a semidirect product of the normal subgroup
(r) 2 Z/nZ and its complement @ = (s) = Z/27Z. Tt is not a direct product of these cyclic groups since it is
nonabelian, but it is very natural to factor it into rotations and reflections.

When n = 4, we also have the normal subgroup K = <r2, s> (which consists of four self-inverse elements and
is thus isomorphic to the Klein four-group V = (Z/2Z)?%), and it is easy to see that Q = (rs) = Z/27Z serves
as a complement. Thus D, can be written as a semidirect product of Z/2Z x Z /27 by Z/2Z as well as a
semidirect product of Z/4Z by Z/27Z.

Example 1.31. Similarly, S,, = 4,,x((12)). When n = 3, we have A,, = Z/3Z, hence S3 = (Z/3Z) x(Z/2Z).
Z/6Z is a direct product and thus a semidirect product of (Z/37Z) and (Z/27) as well. These groups are not
isomorphic as the latter is abelian and the former is not, so we see again that semidirect products are not
determined by the isomorphism classes of the factors.

1 =z
Example 1.32. The discrete Heisenberg group consists of all integer matrices of the form [0 1

0 0
Such a matrix is more succinctly represented by the 3-tuple (z,y, z) € Z3, in which case the group law reads
(x,y,2)(2',y,2) = (z+a’,y+y', z+2'+xy’). Clearly (0,0,0) is the identity and (z,y,2) ! = (—z, —y, xy—2).

z
Yyl -
1

Keeping this notation, consider the subgroups M = {(z,0,0) : € Z} and N = {(0,y,2) : y,z € Z}.
Since (,0,0)(2’,0,0) = (z + 2/,0,0) and (0,y,2)(0,y',2") = (0,y + v,z + 2'), we see that M = Z and
N = Z2. Moreover, M N N = {(0,0,0)}, and for any z,y,2z € Z, (2,0,0)(0,y,2z — zy) = (z,y,2) and
(2,0,0)(0,y, 2)(2,0,0)"t = (2,9, 2 + 2y)(—,0,0) = (0,9, 2 + zy), so H = 72 x 7.

If G = K x @, then the map 0 : Q — Aut(K) defined by 6(q) = 0, with 0,(k) = qkq™! is clearly a
homomorphism, and we have (k1g1)(k2q2) = (k1 - q1k2g; ) (q102) = (104, (k2))(q162)-

This suggests that a semidirect product depends not only on the normal subgroup K and its complement @,
but also on the ‘way in which K is normal in G’ as determined by the conjugation action of @) on K, which
helps to demystify the observation that semidirect products of isomorphic groups need not be isomorphic.
It also suggests a way to combine general groups into external semidirect products:

If G and H are groups and 0 : H — Aut(G) is a homomorphism, define the semidirect product G xg H to
be the set {(a,2): a € G,z € H} equipped with the group law (a,z)(b,y) = (ab,(b),zy) where 0, = 6().
(When 6 maps every x € H to the identity map on G, we recover the direct product as a special case.)

G Xy H is certainly closed under this product, and we compute

[(a,2)(b,9)](c, 2) = (aba(b), 2y) (¢, 2) = (a0s(b)0ay(c), 2y2),
(a,2)[(b,y)(c, 2)] = (a,2) (b0, (), y2) = (aby (00y(c)), zy2),
so associativity follows from 6, (b8, (c)) = 65(b)0, (Hy(c)) 0. (0)0y(c).
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Now (eq, epr) is evidently the group identity, so the inverse of (a, z) must be the element (b, y) with (eg,eq) =
(a,2)(b,y) = (ab,(b), vy). Examining the second coordinate shows that y = z~! and examining the first
shows that eq = af,(b), so that b =6;'(a™') = 0,-1(a™"); one easily checks that (6,-1(a™1),27")(a,z) =
(szl(a_l)ﬂmfl(a),x_lx) = (szl(eg),eH) = (eq,emn) as well.

Moreover, it is routine to show that (a,x) — x is a surjective homomorphism from G xg H to H with
kernel {(a,ep) : a € G}. We identify this kernel with G via the isomorphism (a,ey) — a, and we have
{(eg,m) cx € H} >~ H by a parallel argument. The two subgroups clearly have only (eq,ey) in common,
and for any (a,z) € G xg H, we have (a,eq)(eq,z) = (abe,(eg), enx) = (a,z). (We can also write
(a,x) = (eGem (Ggl(a)),er) = (eg,x) (Ggl(a),eH).)

Finally, observe that (e, )(a,ex)(eq, #) ™! = (eq, x)(a,en) (e, z71) = (eq,z)(a, 71 = (egbs(a), zz™") =

(62(a), err), s0 0, corresponds to conjugation by (eq,z) in G xg H.

Remark 1.3. The Schur-Zassenhaus theorem asserts that if N < G with |[N| and [G : N] relatively prime,
then G = N x @ with Q@ = G/N.
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2 GROUP REPRESENTATIONS

The general idea of representation theory is that one can study a group by letting it act linearly on a vector

space. In this course, we will work exclusively with finite-dimensional vector spaces over C.

Formally, a representation of a finite group G is a pair (p, V') where V' is a vector space and p is a homomor-
phism from G to GL(V'), the group of automorphisms of V.

Thus for every s,t € G, we have p(st) = p(s)p(t). Writing I for the identity map on V, this implies that
p(id) = I and p(s™") = p(s)~".

(Here and henceforth we write id for the group identity to avoid confusion with the natural exponent.)
Since the codomain is part of the definition of a function, we will often just speak of the representation p.

We call V' the representation space and say that d, = dim(V) is the degree or dimension of p.

Also, we will occasionally find it convenient to employ the notation ps := p(s).

When V = C" comes equipped with a basis {ey,...,e,}, we can represent a € GL(V) by the n x n matrix
having j*" column a(e;). In this view, a representation of G is a rule that associates an invertible matrix to

each group element in a manner that respects the underlying structure.

We won’t be doing anything too fancy in this class, so we can generally just think of the representation space

as C™ with the standard basis and treat our representations as matrices.

Of course, the choice of basis is arbitrary, so let’s say that representations (p,V) and (p’,V’) of G are

equivalent if there is a linear bijection 7 : V — V'’ which satisfies

Tops=p.or forall se€q.

Example 2.1. We always have the trivial representation po(s) = 1 for all s € G

When G = S,,, another one-dimensional representation is the sign representation py (o) = sgn(o).

Example 2.2. Suppose that W = span(w) is a one-dimensional subspace of C? and let 7(s) = I, the d x d
identity matrix, for all s € G. The map 7 : W — C defined by 7(¢cw) = ¢ is a linear bijection satisfying

po(s)T(ew) = po(s)c = ¢ = 7(cw) = 7(no(s)cw),
so (no, W) is equivalent to (pg,C). Similarly, n4 (o) = sgn(o)I, is equivalent to pi.

In general, p(s)v = v and p(o)v = sgn(o)v are valid representations for any vector space V. However, when

dim (V') > 1, these are direct sums of trivial/sign representations; see below.

Example 2.3. If |G| = m, the left reqular representation is (A, V') where V' is an m-dimensional vector space
with basis {eg}scc and X satisfies A(g)en = egy, for all g,h € G.

The right regular representation on V is given by p(g)e, = ep,-1, and the map defined by 7(ey) = e,
shows that A and p are equivalent.
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Example 2.4. If G = 5, the permutation representation is defined by taking V' to be a vector space with
basis {e1,...,e,} and letting p : S, = V be given by p(0)er = ey ().

This associates to each o € S,, the permutation matrix R, having (i, j)-entry 1{c(j) =i}. For any x € C",
Rox has k™ coordinate ,-1x).

More generally if ¢ : G x X — X defines an action of a group G on a finite set X and V is a vector space

with basis {e;}.cx, the associated permutation representation (p, V') is defined by p(g)e, = €,(g,4)-

The (left) regular representation is the special case X = G, p(g,h) = gh.

If (p,V) is a representation and W is a subspace of V' which is stable under p (so p(s)w € W for every
s € G, w € W), the restriction of p to W gives a subrepresentation. We always have the subrepresentations

corresponding to W =V and W = {0}. If p admits no other subrepresentations, we say that it is irreducible.

Now recall that V' is said to be the direct sum of W1, Wy <V (written V = W7 @ W) if every v € V can
be uniquely expressed as v = wy + wo with wy; € W; and wo € W,
This is equivalent to requiring that W3 N Wa = {0} and dim(V) = dim(W7) + dim(Ws).

(We can also form the external direct sum of vector spaces U and V' as the vector space consisting of ordered
pairs in U x V' with all operations performed componentwise.)

The direct sum of representations (p',Wy) and (p?, Ws) is the representation (p! @ p?, Wi & Wa) defined by
(' @ p?)s (W1 + W) = py(W1) + p3(w2).

(For external direct sums, the analogous definition is (p* ® p?)s (w1, wa) = (pl(w1), p2(w2)).)

By construction, p* @ p? has degree dig,2 = dp1 +d2.

The direct sum of more than two representations is defined by p' @ - @ p**t! = (p' @ --- @ pF) @ pF+L.

If we think of p!(s),..., p"(s) as matrices, then we can express the direct sum as the block diagonal matrix
p'(s) o
plo--@ph(s) =
o P*(s)
Here we are assuming that a basis of @le W, is given by {ef,...,e} ,...,ef,... ek } with {ef,... e} }

the corresponding basis for W;.

Example 2.5. Let G = S3 and W = {x €eC¥:xy+agta3= 0}. A basis for W is given by w; = e; —es
and wy = ey — e3 where e, e5, e5 are the standard basis vectors in C3. W is stable under the permutation
representation (p, C3) since permuting the coordinates of a vector does not change their sum.

I claim that the standard representation (p, W) is irreducible. Indeed every nontrivial subspace of W is of

the form W’ = span(w) for some nonzero w = (z,y, z) in W.

Without loss of generality, assume that x # 0 so that (1,y,2") € W'. If W’ were stable under p, then we
would also have (y',1,2’) and thus (1 —y’,y' — 1,0) in W'.

If 3/ # 1, this implies that e; — e; and thus e; — e3 are in W/, hence W' = W.

If ' = 1, we would have (1,1,—2) € W’ (as the coordinates must sum to 0), so (1,—2,1) and thus (0, 3, —3)

are in W/, which implies that e; — e3 and thus e; — e; are in W’.
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We can express p(7) in matrix form by computing

] p(m)ws | p(m)ws | p(m) |
id (1,-1,0) = wy (0,1,-1) = w Ll) ﬂ
(12) (—1,1,0) = —wy (1,0,-1) = w1 + w2 [_01 j
(13) (0,-1,1) = —w, (-1,1,0) = —w [_01 _01]
(23) | (1,0,—1) = wy + wo (0,=1,1) = —wy 1 01:
(123) (0,1,-1) = wy (=1,0,1) = —=w; — wy (1) j
(321) | (—1,0,1) = —w1 — w2 (1,-1,0) =wy _1 (1)

Observe that the orthogonal complement of W in C* is W+ = span(1). This one-dimensional subspace

carries the trivial representation and we can form the direct sum pg @ p.

Relative to the basis B = {1, w;,ws}, this has matrix form

1 0 0 1 0 0
po®p((13))=10 0 —1|,po®p((321))=|0 —1 1f,...
0 -1 0 0 -1 0

To express these in the standard basis £ = {ej, es, €3}, we must conjugate with the change of basis matrix

Pe_ 3 whose j*™ column is the standard coordinates of the j*" vector in B.

This gives the equivalent matrix representations

1 1 o[t o o]t 1 o 0
(po®p)((13) = |1 -1 1|]0 0 —1| |1 -1 = of,
1 0 -1]]o -1 o] |1 o -1 1 0 0]
11 olft o ot 1 o] [0 0]
(po®p)((321)) = |1 -1 1]]0 -1 1| |1 -1 1 = |0 0 1],
1 0 -1]]|o -1 0] |1 0 -1 I 0]

which we recognize as the permutation representation!
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Our next order of business is to show that the irreducible representations are the building blocks of all others

in the sense that every representation is a direct sum of irreducible representations.

To this end, we record the following proposition.

Proposition 2.1. Let p: G — GL(V) be a representation and suppose that W <V is stable under p. Then
there exists a complement W' <V such that V. =W & W' and W' is stable under p.

Proof. Let (-,-) be an inner product on V' and define a new inner product (-, -)p by
x,¥),=Y_ (p(s)x,p(s)y) -
seG
This is indeed conjugate-symmetric, linear in the first argument, and positive-definite since (-, -) is an inner
product and p(s) is invertible. Moreover, it is invariant under p in the sense that

(p()x. p(t)y), = Y {p(s)p(t)x, p(s)p(t)y) = D (p(st)x, p(st)y)

seG seG

= 3" (plu)x, plu)y) = (x,y), .

ueG
Let W’ be the orthogonal complement of W with respect to this inner product. Then V =W & W’ and W'
is stable under p because for any x € W',y € W, t € G, we have z = p(t~ 1)y € W and thus

(p(t)x,y), =Y _(p(s)pt)x, p(s)y) = > {p(st)x, p(st)p(t")y)

s€EG s€G
= > (plw)x, p(w)z) = (x,2), = 0. O
ueG
Remark 2.1. Note that the invariance of (-,-)  means that if {f;,... f,} is an orthonormal basis of V' with

respect to (-,-), , then (p(s)f;, p(s)f;) , = d;; for all s € G, i, € [n].

Also, if {e1,...,e,} is an orthonormal basis of V' with respect to (-,-) and M is the linear transformation
defined by Me; = f;, then (Me;, Me;) , = (f;,f;) , = di;; = (e;, €;), hence (Mu, Mv) , = (u,v) by linearity.

It follows that the equivalent representation 7 = M ~'pM satisfies
(T(s)ei, T(s)ej) = (MT(s)ei, M7(s)e;) , = (p(s)Me;, p(s)Me;) , = (p(s)fi, p(s)f;) , = di;

and thus is unitary with respect to (-, ).

As such, we can always assume that our representations are unitary.

We are now able to prove the following extremely powerful result which enables us to study representations

by breaking them up into their irreducible components.

Theorem 2.1 (Maschke’s Theorem). Fwvery representation is a direct sum of irreducible representations.

Proof. If d, = 1, then p is irreducible since V' has no nontrivial subspaces. Now assume that the result
holds for all representations of degree at most k and let d, = k + 1. If (p,V) is irreducible, then we
are done. Otherwise, there is a stable subspace W < V and Proposition 2.1 gives V = W & W' with
dim(W),dim(W’) < k. The induction hypothesis shows that W and W' are direct sums of irreps and the

result follows by the principle of induction. O
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The direct sum construction gives us a means of constructing new representations of G from old ones. The

other main way of doing this is by taking tensor products.
The tensor product of vector spaces U and V is the space U ® V consisting of formal linear combinations of
symbols of the form u® v (with u € U, v € V) subject to the relations
(au; 4+ fuz) @ v =0au; ® Vv + fuz ® v,

u® (awy + fwy) = au @ wi + fu ® ws.
If {e;}icim) and {f;} ;e[ are bases for U and V, then a basis for U @ V' is given by {e; ® f; }ic(m),je[n]-
The tensor product of representations (p,U) and (n,V) is the representation (p ® 7,U ® V) defined by
(p@n)s(u®v) = ps(u) @ns(v), having degree d,g, = d,d,.

If p(s) and 7n(s) are in matrix form relative to {€;}ic(m and {f;};c[n), then relative to {e; ® £} }icm] jcin)»

their tensor product has (block) matrix form

p(s)ian(s)  p(s)1,2n(s) p(s)1,a,m(s

p(8)21n(s)  p(8)2,2n(s) p(8)2,a,m(s
pRn(s) =

p(8)a,1m(s)  p(s)d,2n(s) p(8)d,,d,m(s)
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3 CHARACTERS
Recall that if V' is a vector space with basis {e1,...,e,}, then a € GL(V) can be represented as the matrix
[a; ;] having j*® column a(e;). This enables us to define the trace of a as Tr(a) = > ;_, ak .

Some basic properties of the trace are established in the appendix. In particular, it is shown to be independent

of the choice of basis, so one can speak unambiguously of the trace of a finite-dimensional representation.

We define the character of a representation p : G — GL(V') as the function x, : G — C given by

Xp(8) = Tr(p(s)).

If p is an irreducible representation, we call x, an irreducible character. If d, = 1, then x, = p is called a

linear character.

Characters are extremely useful objects. One reason for this is that they retain a lot of information about

the associated representation even though they are scalar- rather than matrix-valued.

Example 3.1. If p is the n-dimensional permutation representation of .S,, from Example 2.4, then

Xo(0) =D p(0)in =D Ho(k) =k}

k

n n

1 k=1

gives the number of fixed points of o.

Example 3.2. If p and \ are representations of GG, then the block matrix constructions of the direct sum

and tensor product show that x,ex(9) = X,(9) + xa(g) and x,ex(9) = X»(9)x2(9)-

Proposition 3.1. If x is the character of a representation p having degree d, then
(1) x(id) = d

(2) x(s) = x(s)

(3) x(sts™') = x(t)

Proof. The first assertion follows from the fact that p(id) = I.

For the second, if o(s) = m, then p(s)™ = p(s™) = p(id) = I4, hence the eigenvalues of p(s) must be m™

roots of unity. (This is also a consequence of the fact that we can choose a basis in which our representations

are unitary.) It follows that

Finally since Tr(AB) = Tr(BA),

X(sts™) = Te(plsts™)) = Tr(p()p(B)o(s)”
= Tr(p(s) "' p(s)p(t)) = Tr(p(t)) = x(t)- O

Since the trace is preserved under cyclic shifts of the argument—e.g. Tr(ABC) = Tr(C AB)—we likewise
see that if p’ = 7p7~1, then Tr(p’) = Tr(p). That is, equivalent representations have identical characters.
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For our next results about characters, we need to establish the following surprisingly useful fact known as

Schur’s Lemma.

Lemma 3.1. Let (p*, Vi) and (p?,V2) be irreducible representations of G, and suppose that f : Vi — Va is
a linear map that satisfies
fopt=p2of forallscG.
(1) If p' and p* are not equivalent, then f = 0.
(2) If Vi = Vy and p' = p?, then f is a scalar multiple of the identity.

Proof. Note that ker(f) = {v € V1 : f(v) = 0} is stable under p' since v € ker(f) implies

f(ps(v)) = p3(f(v)) = p3(0) = 0.

Similarly, Im(f) = {w € Vo : w = f(v) for some v € Vi } is stable under p* since w = f(v) implies that
pa(w) = pi(F(v)) = F(ps(v)).

Thus by irreducibility, ker(f) is either {0} or V; and Im(f) is either {0} or V5.
It follows that if f # 0, then ker(f) = {0} and Im(f) = V4, so f is a bijection and the representations are

equivalent.

Now suppose that V; = V5 and p' = p?. The claim certainly holds if f = 0. Otherwise, f has a nonzero
eigenvalue \. In this case, the map fy = f — A\I has a nontrivial kernel and satisfies fy o p! = p2 o f\, hence
fx = 0. (Observe that it is important here that we are working over an algebraically closed field.) O

Corollary 3.1. Let (p', V1) and (p?, V) be irreducible representations of G, write d = dim(V1), and let
h: Vi — Vs be a linear map. Define
~ 1 .
hz@Z(P?) Yohop;. (3.1)
seG

(1) If p* and p? are not equivalent, then h=0.
(2) If Vi =V and p' = p?, then h = AT with A = Tr(h)/d.

Proof. For any t € G,

1 1 _ _
(p7) 10hop§=@2(/}?) Yp2) " o hoplpt
seG
1

= 1@ e oho gl =T
seG
hence h o p! = p?o h.

If p! and p? are not equivalent, then Schur’s lemma implies that h=0.

If Vi = V5 and p! = p?, Schur’s lemma ensures that h= Al, and taking the trace of both sides in Equation
(3.1) shows that A = Tr(h)/d. O
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Let us now suppose that our representations are given in the matrix form p} = [r; ;(s)], p? = [¢; ;(s)]. Writing

the linear maps from Corollary 3.1 as h = [xz il h= [Z; ;], Equation (3.1) can be expressed entrywise as
Tig= Z @i (87w krr0(s). (3.2)
5,5,k

In the first case, T is the zero matrix for every choice of x—such as those with a single entry equal to 1 and

all others 0—so we must have

|G| Zng rkf ) 0.

In the second case, Z; ¢ = Ad; with A = é Zj & xj7k6jk. Substituting this into Equation (3.2) yields
1
y > @ kbkbi = Z rig(s™H) @ kree(s).
J.k EN/N

As this holds for all choices of x, we can equate coefficients to obtain

1
|G| ZT%] s Tkg ) = déjk(sig.

Recalling that we can choose bases so that our representations are unitary and thus satisfy 7; ;(s™') = r;.(s)

(and employing the reindexing s + s~ k <+ £ for the sake of aesthetics), we record the foregoing as

Corollary 3.2. Let (p', V1) and (p?,Va) be irreducible representations of G having (unitary) matriz form
pt=1[ri;i(s)], p? = l4i;(s)], and write d = dim(Vy). Then for all valid indices i, j, k, ¢

(1) If p* and p? are not equivalent,

1
@l > gij(s)rre(s) = 0.
(2) If Vi = Va and p' = p?,

1 L i=kandj=1¢
Y i (s)Tr(s) = :
Gl —~"" 0

otherwise

That is, the matrix entries of the irreducible representations are orthogonal with respect to the inner product

(flg) = |G|Zf g(s), f,g:G—C.

seG

One immediate consequence of this observation is that there are only finitely many irreducible representations
of a finite group G since dim (C%) = |G].

Another is the first orthogonality relation given below.

Theorem 3.1. The irreducible characters are orthonormal with respect to (-|-).

Proof. Let p be an irreducible representation of degree d with [r; j(t)] = p(t) a unitary matrix. The associated

character is x,(t) = ZZ=1 T 1(t), and Corollary 3.2 implies

(X xp) = |G\ZX” )Xo (5) |G|ZZ?”M ZTM = (rik|ree) Z5k€/d—1

s€G S€G k=1 k¢
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Similarly, if  is an inequivalent irrep with [g; ;(¢)] = 7(t) a unitary matrix, then

(o [xXn) =D (rkk | gee) = 0. 0
ot

We can now say a bit more about the direct sum decomposition from Theorem 2.1.

Proposition 3.2. Let (p, V) be a representation of G, and suppose that V. =W1®- - -®Wy, is a decomposition
of V into irreducible components. If (n, W) is an irreducible representation of G, then the number of W,

which are equivalent to W is (x, | x»)-

Proof. Since the character of a direct sum is the sum of the constituent characters (see Homework 4),
(Xp | xn) = O [xn) + -+ + (e [ xn)

with x; the character of W;. The result follows since (x; | x,) is 1 if W; =2 W and 0 otherwise. |

An upshot of this result is that the multiplicity of W in V' does not depend on the chosen decomposition.

Corollary 3.3. Representations with the same character are equivalent.

Proof. Both contain the same irreps with the same multiplicity. O

Corollary 3.4. For any representation (p,V'), (X, | X,) is a positive integer which equals 1 iff p is irreducible.

Proof. Let V=nV; & --- ® n,,V,, be a direct sum decomposition of V' into irreducible components. Here

Vi,...,Vm, is a complete list of the irreps and n; € Ny is the number of copies of V; in V.

Writing x; for the character corresponding to V;, we have

m
(0 0) = (zm zm> S s () = 3
i,J i=1

This is a positive integer that equals 1 if and only if some n; is 1 and the rest are 0. |

Example 3.3. If p is an irreducible representation of G and A is a one-dimensional representation of G,
then \ ® p is irreducible because A(g ))\( ) =1 for all g, hence

=1
(Xagp | X20p) = |G| Z 9)Xp(9) |G| ZXp

geG geG

Example 3.4. Let p be the n-dimensional permutation representation of S,. Arguing as in Example 2.5,
the subspaces W = {x € C" : @1 + - + &, = 0} and W+ = span(1) are stable under p, so p is the direct
sum of the standard representation and the trivial representation. The latter is irreducible since it is one-
dimensional. If we are able to show that (x, | x,) = 2, then we can conclude that the standard representation
is irreducible as well.

To this end, let X = Y7 | 1{o(i) = i} be the random variable that records the number of fixed points in
a permutation o drawn uniformly from S,,. We saw in Example 3.1 that x,(c) gives the number of fixed
points of o. Since o and o' have the same number of fixed points,

(Xp|Xp) Z Xp 1):E[X2}'

O’ESn
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The desired result follows since X% =7 | 1{0( = Z} + 22# 1{0 =i,0(j) = j} has expectation

X =3 "Plo(i) =i} + > _P{o(i) = i,0(j) = j}
i=1 i#j
(n—1)!

(n—2)!

3 = 2.

It turns out to be quite instructive to play the same sort of game with the regular representation of an

arbitrary finite group G.

Recall from Example 2.3 that this is the representation A defined by A(g)e;, = ey, for {es}seq a basis of the
representation space. It has degree d) = |G| and matrix form ¢, (s) = 1{sh = g}.

Since sg = g iff s = id, the character of the regular representation is

= Z lyg(s) =

geG 0, otherwise

|G|, s=id

Proposition 3.3. FEvery irreducible representation is contained in the reqular representation with multiplicity

equal to its degree.

Proof. Let X be the regular representation of G and let p be an irreducible representation. Then

1 1
00 1X0) = g 0 Al ™) = ralid)ptid) = 15 1G1d, = 0
seG

Corollary 3.5. Let p1,...,pm be a complete list of the irreducible representations of G with py having

character xx and degree dy.

(1) 33y di = |G

(2) For s #id, ;" | dpxi(s) =0

Proof. Proposition 3.3 shows that the regular representation has character x(s) = >_/" | dixx(s).

Taking s = id gives (1), and taking s # id gives (2). O

The preceding results give upper bounds on the degrees and number of irreducible representations of G, as

well as a criterion for checking that one has an exhaustive list of the irreps.

Also, since we know that the entries of the irreducible representations in unitary matrix form are orthogonal

with the entries of p; having norm d; ', the fact that there are ", | d? = |G| of them gives

Proposition 3.4. Let [r¥ } be the matriz form of the irreducible representation py with respect to a basis
that makes it unitary. Then an orthonormal basis for C¢ is given by {/dy, rm» k€ m], i,j € [dy]}.

Example 3.5. For the dihedral group D,, with n = 2m, there are 4 one-dimensional representations,

z/Jl(rk) =1=11(r"s),

Yo (rF) = 1= —4u(r*s),
G3(r*) = (=1)" = y3(r"s),
$a(r*) = (=1)" = —u(r"s).
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The remaining are two-dimensional: Writing w = e ™, we have for each 1 </ <m — 1,

Lk — Lk
By W 0 k| 0w
pg(T )_ [ ka‘| ) pg(?’ 8) - [wgk 0 ‘| .

Indeed, the maps g — ;(g) and g — p(g) are clearly homomorphisms, and the p; are irreducible because

pe(r*) and pg(r¥s) have no eigenvectors in common, so there is no stable one-dimensional subspace.

As4-12+ (m — 1) - 22 = 2n, this accounts for all of them.
Observe that the characters of the two-dimensional irreps satisfy
wlk
xe(r®) = xo(r™*) = w* + w™* = 2cos <m> )

Xg(srk) =0.
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4 THE FOURIER TRANSFORM

Given a finite group G, we define the convolution of f,g: G — C by
(fxg)(s) =D flst™)
teG
(Like much in this section, the above definition generalizes from finite to locally compact groups by replacing

summation with integration against Haar measure. For instance, when G is the real numbers under addition,
fz—=y)g(y)dy.)

Repeated convolution is expressed in the exponential notation f*! = f and f** = fx f*k=1),

we get the familiar convolution operation (f * g)(z) = [~

Example 4.1. Convolution plays nicely with delta functions in the sense that
(8g % 0n)(s) = Y _ (st )0 (t) = 04(sh™") = Sgn(s).
teG

Note that if gh # hg, then d, * d), # 05, * 04, so the convolution product is not commutative in general.
However, if G is abelian, then the change of variables u = ¢~'s gives

(Fxg)(s) =D f(st gty =D f(t  s)g(t) = Y f(w)

teG teG ueG

= (g f)(s).

Example 4.2. For any group G, the space C“ of functions from G to C forms a ring under the operations
of pointwise addition and convolution.
+ g(s) is clear—f = 0 is the identity

and —g is the additive inverse of g—as is the distributivity of convolution over this pointwise addition, so it

The abelian group structure induced by the sum (f + g)(s) = f(s)

remains only to check associativity of convolution and the existence of a multiplicative identity.

For the former, observe that for any f,g,h: G — C, the change of variables r = tu gives

((fxg)xh)(s) =D (f*g)(su” =D > flsu T )g(6)h(u)
ueG uEG tEG
=3 flsr! =Y flsr N (g*h)(r) = (f* (g*h))(s).
ueGreG reG
For the latter, we compute
* 51d Z f f(s)a
teq
zd*f Z(szd :f(S)
te@

(Alternatively, f = dea f(g9)d4 and, by Example 4.1, §;q * §g = &4 * d;q...)

Now define the Fourier transform of f : G — C at the representation p as the d, x d, matrix

(p) =D F(s)p(s)

seG

This is a generalization of the discrete Fourier transform (G = Z/nZ) and, suitably interpreted, the standard

Fourier transform for functions on R. As such, it possesses many familiar properties.
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Proposition 4.1. The convolution of functions f,g: G — C has Fourier transform

Proof. Multiplying by p(t~1)p(t) and making the change of variables u = st~! gives

fglp) = Z(f * g)(s)p(s) = Z Z F(st™H)g(t)p(s)
seG seGteG
=D Jst™)g(t)p(st™n(t)
seGteG
=D () 3 gte(t) = F)F(0) -
ueG teG

The fact that Fourier transforms take convolutions to products is very useful in applications like probability
and signal processing. Our next result provides a sort of dictionary that enables one to more explicitly

capitalize on such observations.

The first part shows that a function is completely determined by its Fourier transforms at irreps and gives
a rule for recovering the function from its transforms.

The second can be thought of as relating ‘inner products’ in the time and frequency domains.

Theorem 4.1. Let p1,...,pm be the irreducible representations of G with di,...,d,, the corresponding

degrees. Then for any f,g: G — C, we have

Fourier Inversion Formula:

1= ;diTr(pz(S NF(pi)
Plancherel Formula: .
S f(s)g(s™) = ﬁ S 4T (Flpi)(p1)
seG i=1

Proof. Since both sides of the above equations are linear in f, it suffices to prove the result for f(s) = d4,

~

in which case f(p;) = p:i(t).

For the inversion formula, the right-hand side is then
1 m . 1 m .
Il D diTr(pi(s)pilt) = €] D dixi(sT') = by
i=1 i=1
by Corollary 3.5.

For the Plancherel formula, we must show that
_ 1 & .
g(t™h) = ] Zdz’Tr(Pi(t)g(Pi)),
i=1
and this follows immediately from the inversion formula. ]

Next, we call f € C a class function if it’s constant on conjugacy classes—that is, f(sts™') = f(t) for all

s,t € G—and we write C(G) for the set of class functions on G.
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Proposition 4.2. C(G) is the center of CE.

Proof. Since cl(id) = {id}, 6;q(sts™!) = §;4(t) for all s,t € G, hence C(G) contains the multiplicative identity.
Also, for any f,g € C(G), s,t € G,

f*g(sts™ Zf sts™u Zf sts™ (sus™H) " H)g(sus™t)
= Zf (stu=ts 1) g(sus™ Zf (tu™Hg(u) = f* g(t).

As f,g € C(G) clearly implies f — g € C(G), we conclude that C(G) is a subring of C%.

Now suppose that f € C(G), h € CY, s € G. Then the change of variables r = st~! gives

)= h(st ") f(t) =D h(st ") f(sts™") Zh = fxh(s).

Conversely, if h € C satisfies f * h = h* f for all f € C%, then for any s,t € G,
thu Jg—1(u) = hx§,-1(t) = d5—1 x h(t) Zééltu (u) = h(st),

hence h(sts™') = h((st)s™*) = h(s7(st)) = h(t). O

Proposition 4.3. If f is a class function on G, then its Fourier transform at an irreducible representation
p s given by f(p) = A with

T X st = ).
p

P sea

Proof. Observe that

() J(P)p(s)™ =D FB)p(s)p(t)p(s) ™ =3 f(t)plsts™)
=Y f(sT us)p(u) =Y flw)p(u) = f(p),

so Schur’s lemma shows that f(p) = M.
Taking traces of both sides gives d,A = Tr(z f(t)p(t)) = Z F()xp(t). O
t

t

Example 4.3. A probability 1 on a group G defines a Markov chain {X};}7°, that proceeds by sampling
independently from g and left-multiplying, so that the transition function is

P(g,h) =P{Xpy1 =h|Xp =g} = pulhg™).
The distribution after k steps of the chain started at the identity is given by the k-fold convolution p**

which has Fourier transform ;ﬁ(pl) = 7i(p;)* by Proposition 4.1.

If 11 is constant on the conjugacy classes of G (which happens in many natural examples), then Proposition
4.3 tells us that 7i(p;) = \if and thus p**(p;) = AT with A\ = Y ¢ u(s)le(f), the expectation of the

associated character ratio under p.

Applying the inversion formula then yields

P(Xi = 5| Xo = id} = () = 15 D Zd (il o) = 1 Y Zd)\ xi(s
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Theorem 4.2. The irreducible characters form an orthonormal basis for the space of class functions.

Proof. The first orthogonality relation tells us that the irreducible characters are orthonormal with respect
to (-|-), so it remains only to show that there are enough of them. In particular, the result will follow upon
demonstrating that any class function which is orthogonal to the conjugates of each irreducible character

must be identically 0.
Suppose that f is such a function. Then for any irrep p;, Proposition 4.3 shows that f(pl) = \;I with

=|G|d;* (f|xi) = 0. Fourier inversion then implies that f = 0. O
Corollary 4.1. The number of irreducible representations is equal to the number of conjugacy classes.

Proof. We know that the irreducible characters of G form a basis for C(G). Another basis is {1, };:1 where
C1,...,C, are the distinct conjugacy classes of G. |

Corollary 4.2. The irreducible representations of a finite abelian group are all one-dimensional.

Proof. The conjugacy classes of an abelian group G all have size one, so Corollary 4.1 implies that the

number of irreps is |G|. Since the sum of their squared degrees is also |G|, they must all have degree one. [

Another consequence of Theorem 4.2 is the second orthogonality relation.

Theorem 4.3. If x1,...,Xm are the irreducible characters of G, then for any s,t € G,
o S = it e )
G| — [el(s)]

Proof. Set fy(t) = 1{t € cl(s)}. Then f, is a class function, so Theorem 4.2 implies f(t) = Y7 cv;xi(t)

where

|Cl(3)|_78
= (fslxi) = \G|Zfs alt) = S xs).

Taking conjugates of

1{156(:1 z_: |G| Xz )xi(t)

and dividing by |cl(s)| yields the assertion. O
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5 ABELIAN GROUPS AND DIMENSION

We have shown that the irreducible representations of a finite abelian group all have degree one, but we can

actually be a little more specific.

Example 5.1. The irreps of G = Z/nZ are all of the form w(k) = w* as w ranges over the n'" roots of 1.

k. Then

2wim

Indeed, for any m € {0,1,...,n — 1}, define m : G — C* by m(k) =e" =

m(j + k) = e TR = TR = (G)m(k),
so (m,C) is a representation. It’s irreducible because d,, =
Since we have produced one irrep for each of the n conjugacy classes of G, the list is exhaustive.

Observe that in this case, the Fourier transform and inversion formula are given by

n—1

Flm) = 3 fR)e™, - Z e,

k=0

3

As finite abelian groups are products of cyclic groups, knowing how to compute representations of products

will tell us (in principle) all about their representation theory.

Recall that if G; and G2 are groups, their direct product is the group G; x G2 with multiplication
(s1,t1)(82,t2) = (8182, t1t2).
Given representations (p!,V;) of G and (p?, V) of Ga, we can define the representation (p! ® p?, V4 @ V3)
of G1 x G2 by

(0" @ p*)(s,0) (Vi @ V2) = py (V1) ® pi (Va).
The associated character is X 1,2 ((5,1)) = X,1(5)x,2(t) and the degree is thus digp2 = d,1d,e.
This follows by thinking about (p! ® pz)(&t) as a block diagonal matrix as we did when discussing the tensor

product of two representations of a single group.

(When G; = G5 = G, the restriction of the representation p! ® p? of G x G to the diagonal gives the
representation p! ® p? of G.)

Proposition 5.1. If G; and G2 are finite groups, then every irreducible representation of Gy X G is

equivalent to some p' @ p* with p* € Irr(G;).
Proof. Let p' and p? be irreducible representations of G; and G, respectively. Then

1 -
(Xp1®p2 |Xp1®p2) = m Z Xp1®p2(s,t)xp1®p2(8,t)
1 2 (S t)€G1 X Go

e exD DD DRI ()

seG1 teGa

= o 2 1 O g 2 e

seGy teGo

= (Xt I xp1) (o2 [xp2) =1-1 =1,

hence p! ® p? is irreducible by Corollary 3.4.
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If n* € Irr(Gy) is not equivalent to p' or n? € Irr(Gs) is not equivalent to p?, an analogous computation
gives (Xprepz | Xmenz) = (Xt | Xn2) (Xp2 | X52) = 0, so this construction produces distinct irreps.

To see that all have been accounted for, observe that

mi1 Mmo my mo mq mo
NN @y, =D > A2 =D "dY d =|G1||Ga| =Gy x Gal. 0
i=1 j=1 i=1 j=1 i=1 =1

Taken together, Example 5.1 and Proposition 5.1 also imply Corollary 4.2, but it is still quite remarkable
that partial knowledge of the number and dimensions of the irreducible representations can lead so easily to

such a sweeping result. Thus inspired, we now set out to establish a few more facts of this nature.

We have defined the commutator of g,h € G as [g, h] = ghg~'h~!, which equals the identity if and only if g

and h commute.

The commutator subgroup (or derived subgroup) G' =[G, G| is defined to be the subgroup generated by the
commutators, G' = ([g,h] : g,h € G).

For any K < G,if G’ C K, then for all z € G, k € K, zka™! = xka=*k=1k = [z, k]k € K, s0 K < G.
Moreover, for any x,y € G, (zK)(yK) = vyK = yrz~y tayK = yz[z~ 1,y 1K = y2K = (yK)(zK), so
G/K is abelian.

In particular, G’ <« G and G/G’ is abelian.

In fact, if N <1 G is such that G/N is abelian, then for all z,y € G, zyN = (zN)(yN) = (yN)(xN) = yzN,
so zyz~'y~! € N. As x and y were arbitrary, we conclude that G’ C N. The commutator subgroup is thus
the smallest normal subgroup whose quotient is abelian, so we can think of G’ as a measure of abelianity:

the larger the commutator, the less abelian the group.

Theorem 5.1. The number of one-dimensional representations of a finite group G is |G : G'] = |G|/ |G'|.

Proof. Let m : G — G/G' be the natural map m(xz) = zG’. We will show that ¢ — 1 o7 defines a
bijection from the irreducible representations of G/G’ to the one-dimensional representations of G. (Since
G /G’ is abelian, its irreps are all one-dimensional, and of course, one-dimensional representations are always
irreducible.)

On one hand, if ¢ : G/G' — C* is a homomorphism, then ¢yorw : G — C* is a composition of homomorphisms
and thus is a homomorphism, so it defines a one-dimensional representation of G.

On the other, if p : G — C* is a homomorphism, then ker(p) < G and Im(p) = G/ker(p) is a subgroup
of C* and thus abelian. It follows that G’ C ker(p). Define ¢ : G/G' — C* by ¥(xG’') = p(x). This
is coherent because if G’ = yG’, then 27 'y € G’ C ker(p), hence p(y) = p(z)p(z~ly) = p(x). Also,
Y(@G 2G") = P(xzG') = p(xz) = p(x)p(z) = p(xG")p(2G’), so ¢ is a homomorphism. By construction
p=1om. (|

Our next order of business is to prove that the degrees of the irreps divide the order of the group.

We begin by recalling that z € C is said to be an algebraic integer if it is the root of a monic polynomial with
integer coefficients, and we write A for the set of algebraic integers. By the rational roots test, AN Q = Z.

This gives us a sneaky means of establishing divisibility: If d,n € Z with n/d € A, then d|n.
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Observe that characters are traces of unitary matrices and thus sums of roots of unity. Since an n
of one solves ™ — 1 = 0 and Proposition 7.2 ensures that A is closed under addition, we see that if y is a
character of a finite group G, then x(g) is an algebraic integer for each g € G. (Alternatively, if y is the

character of a degree d representation and o(g) = m, then x(g)™ —d = x(¢™) — x(id) = 0.)

Lemma 5.1. Let p be an irreducible representation of a finite group G having degree d and character x.

lcl(9)] x(g)

A.
d €

Then for any g € G,

Proof. Let C4,...,C, be the distinct conjugacy classes of G, write h; = |C;|, and let x; denote the value of
x on C;. We wish to show that h;y;/d is an algebraic integer for each i.

Setting T; = > ,cc, p(x), we see that for any g € G, p(9)Tip(9) ™' = X cc, P92 ") = X ec, P(y) = Ti.

Schur’s lemma thus implies that T, = A;14, and taking traces shows that d\; = erci Tr (p(x)) = hiXi-

Also, T,T; = 3 e, Xyec, P(2Y) = X e 19i5(9)] p(g) where Si;(g) := {(2,y) € Ci x Cj : xy = g}.

Now if ¢’ = aga™" for some a € G, then the map ¢ : S;;(g9) — Si;(¢’) defined by ¢((z,y)) = (aza™',aya™t)
is clearly a bijection, so we can set a;;i := |S;;(g)| where g is any element of Cj, to get
Ty = Z 1S:5(9)] p(g) = Z Z aijrp(g) = Zaijka~
gea k=1g€eCy k=1

Substituting T} = (hxXx/d)Iq into this expression and examining the (1,1)-entry gives (h;x;/d)(h;x;/d) =
> e @ijk(hixn/d), so Lemma 7.8 tells us that h;x;/d € A as desired. O

With the preceding in hand, we can now prove our main result.

Theorem 5.2. If p is a d-dimensional irreducible representation of G, then d{ |G|.

Proof. Let x denote the character of p and keep the notation of Lemma 5.1.
The first orthogonality relation gives 1 = (x| x) = |—Cl;‘ Y oscc X(8)x(s), so

Py =y ¥ -y

seG i=1 seC; i=1

Since h;x;/d and yx; are algebraic integers and A is closed under conjugates, products, and sums, we have

that |G| /d is a rational algebraic integer and the claim follows. O

Remark 5.1. Theorem 5.2 can actually be strengthened to show that the dimension of any irrep divides the
index of the center, [G : Z(G)].

Example 5.2. We have seen that if p is prime and |G| = p?, then G is abelian.
Another proof proceeds by noting that if p € Irr(G) has dimension d, then d|p?, so d € {1,p,p*}. Since

p? = Zpehr(G) df) =1+ ZpEIT‘T‘(G)\{pO} dfj, we cannot have any representation of degree p or p?, so all irreps

are one-dimensional and G is abelian.
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Similarly, if p and ¢ are primes with p < g and ¢ # 1(mod p), then any group G of order pg must be abelian:
If dy,...,ds are the degrees of the irreps, then we must have pg = d3 + -+ + d? and dj, |pq for each k. As
p < g, this means that dj, € {1,p} for all k.

Writing m and n for the number of degree 1 and p irreps, respectively, we have pg = m + np?. Since
m = pq — np? is divisible by p, m | |G| by Theorem 5.1, m > 1 because of the trivial representation, we must
have m = p or m = pg. But m = p gives pg = p(1 + np) implies ¢ = 1(mod p). It follows that the number of

one-dimensional irreps is pgq, hence G is abelian.

Yet another famous example of this general line of reasoning is Burnside’s Theorem that if p and ¢ are primes
and a,b € Ny, then any group of order p®q® is solvable, but this requires a bit more preparatory work than

we have time for right now.
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6 RESTRICTION AND INDUCTION

If v : G — K is a homomorphism and p : K — GL(V) is a representation, then po¢ : G — GL(V) is a
composition of homomorphisms and thus a homomorphism. When 4 is surjective and p is irreducible, this
representation of G is irreducible: If W < V is stable under p o ¢, then for any y € K, there is an x € G
with y = ¢(z) and thus p(y)W = p(v(x))W C W, so W is stable under p as well.

An important example is K = G/N for some N < G with ¢ : G — G/N the natural map. In fact, this is

how we got the one-dimensional irreps of G from those of its abelianization G/G'.

In addition to this lifting of representations, we can sometimes descend from the group to a suitable quotient.
If p: G — GL(V) is a representation of a finite group G with kernel containing N <1 G, then p'(gN) = p(g)
defines a representation of G/N. (N C ker(p) ensures that gN = hN implies p(g) = p(h), so the map
p': G/N — GL(V) is well-defined.) Its character satisfies

<x',x’>G/N=ﬁ > XNV =g Y @

zNeG/N eNeG/N

NI |Cl;‘ > xx®) = (e

xNeG/N yeExN yeG
hence p’ is irreducible precisely when p is.

(In this section, we write (-, ) in place of (-|-) to enhance readability and emphasize the underlying group.)

A kindred question is the how the representations of a group G relate to those of a subgroup H < G.
Certainly, if p : G — GL(V) is a representation of G, then the restriction py : H — GL(V), defined by

pr(x) = p(z) for all x € H, is a representation of H. However, irreducibility of p does not necessarily entail
irreducibility of py. For instance, if H abelian and G is not, then G has a representation of degree greater
than one whose restriction to H cannot be irreducible. (Of course, if p is not irreducible, then pg is not

either since a subspace W <V that is stable under p will also be stable under pg.)

Example 6.1. Let G be a finite group and A < G an abelian subgroup. Then every irreducible representation
of G has degree at most |G|/ |A|.

Indeed, suppose that p : G — GL(V) is irreducible and let p4 be its restriction to A. Let W < V be an
irreducible subrepresentation so that dim(WW) = 1 by Corollary 4.2. Define V/ <V to be the vector subspace
generated by p(s)W as s ranges over G. By construction, V' is stable under p, so irreducibility implies
V' =V. Also, for any g € G, a € A, we have p(ga)W = p(g)p(a)W = p(g)W. It follows that the number of
distinct p(g)W, and thus the dimension of V, is at most [G : A].

To better understand these issues, it helps to start by thinking about class functions:

Given a finite group G and a subgroup H < G, define the restriction map Res$ : C(G) — C(H) by
Res%p(h) = @(h) for p € C(G), h € H.

For ¢ € C(H), let {E : G — Cbeits extension by zero, {/;(g) =1(g)1{g € H}, and define the induction map
Ind$ : C(H) — C(G) by Ind$ |H| ;zz; x gx).

Proposition 7.3 in the appendix shows that these maps are well-defined and linear. Our next result, known

as Frobenius reciprocity, shows they are adjoint.
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Theorem 6.1. Suppose H < G, ) € C(H), and ¢ € C(G). Then
G _ G
<7//,R65H<P>H = <IndH¢a<P>G

Proof. We compute

<Ind > i G| 3" Wmd$u(g)

geG
\G| Z Z Y(x™ gx
gEG »LEG
\G| | TPIPIEED
xeG geG
\G| i1 2 3 Vel
xEG yeG
\GII i 2 3 )
zeG hEH
\H| Y o 3o
heH
=T H| > w(h)p(h) = (v, Resfrp) .
heH
Proposition 6.1. If z1,...,x, is a transversal of H in G, then Ind Zw (x; Lgx,).

Proof. If h € H, then h™'gh € Hiff g € H, so if 1) € C(H) then ¢(h™ 1gh) 1/)( ) Accordingly, we have

Ind |H|ZZ/) ‘Zzw zih ))

zeG i=1 he H

Z D e gw) zi(xflgxi).

hEH

Example 6.2. Suppose K < H < G and let ¢ € C(G). It is easy to see that Resf Res%p = ResG .

More interestingly, induction is also transitive. Indeed, if ¥ € C(K), then

1 _ _
Ind§Indi{¢(g) = ﬁ > Ind ey~ gy)1{y gy € H}
yeG
|H| Z K] D vty gye) ey gy € K} {y gy € H}

z€H

= ﬁ > ﬁ > vy gya) iz y gyr € K,y gy € H}

rzeH yeG
Z Zw g 1{z7'gz € K, 22 tgza™! € H}
H zEG

Z Zw tg)1{z"tgz € K}
H zEG
2 U
eG

(z71g2)1{z"1gz € K} = IndS4(g).

N\H w\H w\
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Now if p is a representation of G with character x,, then the restriction of p to H < G has character
Xpu (h) = Tr(pr(h)) = Tr(p(h)) = x,(h).

In other words, if we denote the restriction of p to H by Resgp, then Xgesc, = Resgxp.

Our next goal is to show that the induction map likewise sends characters to characters, so given a repre-
sentation 7 of H, we can define Indgn to be the representation of G having character Indgxn.

Frobenius reciprocity then tells us that if p is an irreducible representation of G and 7 is an irreducible
representation of H, the multiplicity of 7 in Resgp is equal to the multiplicity of p in Indgn.

Example 6.3. Let Y, be the trivial character on the trivial subgroup {id} < G. Since v~ 1gx = id iff g = id,
we see that
o |G|, g=1id
Indﬁ»d}xO(g) = Z Xo(z ™ gx) = )

zeG 07 g 7& id
is the character of the regular representation.
More generally, let H < G and consider the coset action of G on G/H, g(xH) = gxH.
The set of points fixed by g € G is Fix(g) = {#H : 2 'gz € H}. Since each coset has |H| elements,
|Fix(g)| = ‘%‘ {zeG:a gz e H}|

Thus if o is the trivial character on H, then xo(z lgx) = 1{:6*1936 € H}, SO

1 — . _ .
d§ vo(g) = i > Xo(z"'gx) = |Fix(g)|,
zeG

the character of the permutation representation associated with the coset action.
(Recall that if G acts on X, then the permutation representation is (p, V') where V has basis {e, }.cx and p
is defined by p(g)e, = eg,. Its character is thus x(g) = Y, cx (p(9)€s, €2) = ey {9z =2} = |Fix(g)|.)

The definition of the induction map as an average over conjugates is quite natural (especially in light of
Theorem 6.1) and suggests something about the general form an induced representation should take. We

will elaborate on the intuition soon, but first we provide a ‘reasonable’ construction and check that it works:

Given n : H — GL4(C), let 71(g) = n(g)1{g € H}, let t1,...,t, be a transversal of H in G, and define
md$n(g) to be the rd x rd block matrix with (i, j)-block 7j(¢; ' gt;) for i,5 € [r].

Note that if sy € tphy with hy € H, then 7j(s;  gs;) = 7(h;'t; ‘gt;h;) = n(h) 7 7(t; Lgxt;)n(hy), so
changing the coset representatives just amounts to conjugating by a block-diagonal matrix of the form
dlag(n(h1)7 ) n(hr))

Theorem 6.2. Suppose H is a subgroup of G of index r and n : H — GL4(C) is a representation of H.
Then Ind%n : G — GL.q(C) is a representation of G with character XIndGy = Ind%xn.

Proof. Let ty,...,t, be a transversal of H in G, and for ease of notation, write ¢ = Ind$%n(x) for the rd x rd
block diagonal matrix with (4, j)-block [n$]:; = 7j(t; "at;).
For any z,y € G, i,j € [r], nfnf has (4, j)-block
SN = Skl s = >0t wti)i(t;  yt;)-
k=1 k=1
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In order for ﬁ(t;lytj) to not be the zero matrix, we must have t;lytj € H or yt; € txH. Let t, be the
unique representative of the coset containing yt; so that [nfng]ij = 7(t; 'wte)n(t; 'yt;). This is nonzero
precisely when ti_ll‘t[ € H or t;H = ztyH = zyt;H, which in turn is equivalent to ti_lxytj € H. In this
case, 7)(t; wto)n(ty "yty) = n(t; wte)n(ty yt;) = n(t; wyt;).

We have thus shown that [n& 775 lij = [nfy]
to Proposition 6.1, its character is

ij» SO 7% : G — GL,q(C) is indeed a homomorphism. Appealing

Xne (9) = Tr(nF) = D Te(A(t " gt)) = Xt gt:) = Indfen(9)- O

i=1
The idea is that we start with a representation (n, W) of H, let V be a direct sum of [G : H]| copies of W,

and let G act on V by (1) permuting the summands according to the coset action and (2) acting within each

summand according to 7.

Specifically, let t1,...,t, be a transversal of H in G and set V =@, _, t,W with &z W 2 W for k =1,...,r.
For each g € G, k € [r], there are unique k(g) € [r], by € H with gtj =ty hgr. Given v =3, | tywy,
we define p(g)v = D) _; tu(e)1(hgk)Wk. (Be aware that the ¢; are not acting as scalars, they are keeping
track of the ‘coordinates.’)

By taking natural bases for W = C¢, V =~ C"%, we see that our matrix representation must satisfy
p(g)(Wi,...,w,)T = (vi,...,v,)T where v; = n(h)w; with gt; = t;h. That is, p(g) is the block matrix
having (i, j)-block 77(t; ' gt;).

Example 6.4. The quaternion group is defined as Qg = {#1,+i, +j, £k} with i2 = 2 = k% = ijk = —1.
These relations imply —1 is central and 7, j,l% multiply cyclically like cross-products of unit vectors in R3.

One can check by hand that Qs has commutator subgroup Q% = {£1}, so there are 4 = [Qg : Q] one-
dimensional irreps by Theorem 5.1. (Specifically, there’s the trivial representation pg, and the representations
pz, =1, j, k, that map elements of (x) to 1 and the rest to —1.)

Since the sum of the squared degrees is 8, the remaining irrep is two-dimensional, and it turns out that we
can compute it by induction: Set H = (i) and consider the representation p(i*) = i*. (The dotted i is the
imaginary unit and the hatted 7 is the group element.) A transversal of H in Qs is {1, j}, so our formula

S (5
gives Ind% p(z) = lf)( ) Plaj)

| 77 |, which works out to
p(—jz) p(—jxj)

md%p(+1) = +

10 o
. IndSp(+i) ==+
011 ndy; p(£1)

0

Indfp(+)) =+ ||

-1 .
0 ] , d% p(+k) = +

0 —I
—-i 0|
Since Ind p(i) and Ind% p(k) have no eigenvectors in common, this representation is indeed irreducible.

Example 6.4 shows that irreps sometimes induce to irreps, while Example 6.3 shows they sometimes do not.

Given a representation n of H < G, Corollary 3.4 and Theorem 6.1 imply Indgn € Irr(G) if and only if

1= <X1ndgn7 xlndgn> = <Indﬁxmlnd§xn> = <xn, Resglnd§Xn> .
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If n» = n1 @ 19, then Frobenius reciprocity or linearity of the induction map gives <XIndG777XInd > >

a =
<X1ndcm,xlnde> + <X1ndGn2a XIHdHn2>G > 2,80 Indfm is reducible as well.

As such, we just need to understand Resglndg)g7 for n € Irr(H).

It turns out that it’s about as easy to consider the slightly more general case of Resglnd%X?7 for HHK <G
and 7 any representation of H. A key notion in this analysis is that of a double coset:

Given H,K < G, let H x K act on G by (h,k)g = hgk~!. The orbit of g under this action is the double
coset HgK = {hgk :heHke K}, and we write H\G/K for the set of double cosets of H and K in G.

Theorem 6.3 (Mackey Decomposition). Let H, K < G and let S be a complete set of double coset repre-
sentatives for H\G/K. Then for any ¢ € C(K),

Res$Ind$y = Z Ind4 . Resh . 0®
ses

where K® = sKs™! and 1° € C(K?) is given by ¢*(z) = (s~ 1xs).

Proof. We begin by determining a suitable transversal of K in G.

First, for each s € S, choose a transversal Vy of H N K* in H, so that H = | | . v(H N K?). One readily
checks that (H N K?®)sK = sK, so we have

HsK = | J v(HNK*)sK = | vsK.
veV; vEV;
This union is disjoint since vsK = v'sK for some v,v’ € V; implies s~'v~1v's € K and thus v—!v’ € K*.

Because v,v" € H as well, we have v=1v' € HN K*® or v/ € v(H N K*), hence v = v’ by definition of V.

Accordingly, writing T, = {vs : v € V,} for each s € S and setting T = |J .4 T, we see that

seS
G=||HsE=|] [ Jvsk=|]|]tK=]]tK,
SES seESvEV; seESteTs teT

hence T is a transversal of K in G.

Two applications of Proposition 6.1 now show that for each h € H,

md§e(h) = 3 ot he)

teT

el
seSteTs

= Z Z (s o hos)
seSveVy

= Z Z V(v ho) 1 {v " hy € K*®}
seSveV;

= Z Z ResggKS@bs(v_lhv)l{v_lhv €e HNK®}
seSveVs

=Y Indjj o Resfir et (h). 0
seS
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We say that representations n and A of G are disjoint if they have no equivalent (nonzero) subrepresentations.
If we denote the irreps of G by p1, ..., p,, then we have the direct sum decompositions n = mip; @ - - - O m,.p,

and A = n1p1 @ -+ O n,.p,. where myg,ni € Ny and the isotypic component mypy is the direct sum of my

copies of py. Disjointness means that there is no k € [r] with my,ng > 0 and thus

T T T T K
<X777 X>\> = <Z MiXp;s Z anPj> = Z Z m;n; <Xpi= ij> = Zmznz = 0.
i=1 j=1 i=1

i=1 j=1

That is, representations are disjoint precisely when their characters are orthogonal.

Theorem 6.4 (Mackey’s Irreducibility Criterion). Let H be a subgroup of G and n a representation of H.
For s € G, set H® = sHs™* and let n° be the representation of H® defined by n*(x) = n(s~‘xs).

Then Indgn is an irreducible representation of G if and only if n is irreducible and the representations

Rest ;o0 and Res? | .n® are disjoint for every s ¢ H.

Proof. Let S be a set of representatives for H\G/H. Since any s ¢ H may be chosen as the representative
of its double coset, it will suffice to show that Restr .7 and Resg;HsnS are disjoint for each s € S\ H.

Write x and x® for the characters of n and n°, respectively. For the sole element h of S N H, we have
H"N H = H and n" =1, so Theorem 6.3 gives
Res$Ind$y = Z Ind?  ResH L ox® = x + Z Ind? . ResH L ox®.
seS seS\H

Applying Frobenius reciprocity twice, we find that
<Indgx,1ndgx>G = <X,Resglndgx>H

=060t Y, <x71ndﬁmHsReS§;sts>H
seS\H

=60+ D <Resgmst,Resthsxs>

HNHs
seS\H

Note that the final equality made use of the fact that inner products of characters take values in Ny C R.

Since (x,x)y > 1 with equality iff n € Irr(G) and <ResgﬂH5x,Resg;H5X5> > 0 with equality iff
HNH?

Resganx and ResZ;sts are disjoint, the theorem has been proved. ]

Corollary 6.1. Let n be a representation of H < G and S a transversal of H in G. Then Indgn € Irr(G)
if and only if n € Irr(H) and for each s € S\ H, n and n° are inequivalent.

Proof. As before, we only need to check disjointness for a set of double coset representatives, and H <1 G
implies HxH = xHH = xH, hence H\G/H = G/H. Moreover, H* = sHs™! = H and
00 =Y x(h)x(h) =" x(s7 hs)x (s Ths) = (X", X") 4 »
heH heH
hence 7 is irreducible if and only if 7® is. (The third equality is a reindexing of H, not a statement about
characters being invariant under conjugation; x € C(H) and s ¢ H.) The assertion now follows from

Theorem 6.4 since irreps are disjoint precisely when they’re inequivalent. O
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We conclude with a description of the Mackey machine, which allows one to construct the irreps of the

semidirect product of a subgroup by an abelian normal subgroup from those of the constituent subgroups.
Specifically, suppose A < G is abelian and H is a complement of A in G.
The irreps of A are all one-dimensional and form a group, A\, under pointwise multiplication. Also, G acts
on A by gx = x9 with x9(x) = x(g~'xg) for x € A; this is well-defined since A is normal.
(Note also that we can uniquely write g = ah so that x?(z) = x(h " ta"'wah) = x(h~'zh) = x"(z).)
Let {xi}icr consist of one element from each orbit in A\/G Fori € I,let H; ={h € H : x! = x;} be the
stabilizer in H of y;, and let G; = AH; be the semidirect product of A and H;. Observe that y; extends to
a one-dimensional representation of G; by X;(ah) = x;(a) since
Xi(a1hiazshs) = iz‘(a1h1a2hflh1h2) = Xi(alhlazhfl)

= xi(a1)xi(h1azhi') = xi(a1)xi(az) = Xi(arh1)Xi(azhs).
Similarly, let p be an irreducible representation of H;. Since the projection 7 : G; — H; defined by w(ah) = h
is clearly a surjective homomorphism, p lifts to the irreducible representation p = p o 7 of G;.
Example 3.3 shows that x; ® p is an irreducible representation of G;, and we can form the representation
0;, = Indg (X; ® p) of G.

The following theorem asserts that these are precisely the irreps of G.

Theorem 6.5.

(1) Each 0; , is an irreducible representation of G.
(2) If 0; , is equivalent to 0;, then i = j and p is equivalent to 7.

(3) Ewvery irreducible representation of G is equivalent to some 6; ,.

Proof.

(1) We appeal to Theorem 6.4. Since x; ® p € Irr(G;), we just need to check that Resgjme (Xi ® p) and
Resgfmcg (Xi ® p)*® are disjoint for s ¢ G;.
Now Gf = sAH;s~' = AH¢, so we can uniquely write each g € G; NGf as g = at witha € Aand t € S;
for some transversal S; of A in G; N G§; without loss, A N .S; = {id}, so S; C H?.

In this case, xg,05(9) = Xi(9)x5(9) = xi(a)x,(t) and x(x,07): (9) = Xi(s " gs)xp(s " gs) = x;(a)x5(t),

hence
G; G; _ 1
<ReSGmG$X(>?i®7’)’ReSGmeX(%®535>G_ﬁGS_m Z Xzi05(9)X (00 (9)
v g il geG;NGs
teS; a€A
|G mgs ZXP XP ZXl
teS a€A

Since s ¢ G; ensures that x; and x{ are inequivalent irreps of A, >, xi(a)x;(a) = 0. This establishes

disjointness and thereby the claim.
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(2)

Let T; be a transversal of H; in H, which we may suppose contains id. Since A is abelian and H
a complement of A in G, T; is also a transversal for G; = AH; in G. Moreover, for any z € G,

AzG; = 2AG; = Gy, so T; serves as a set of (A4, G;)-double coset representatives.

Writing x;,, for the character of ¢, ,, Theorem 6.3 yields

~ G ~ s
ResGxi, = Resﬁlndgi (Xi ® x5) = Z IndﬁﬁgfResA;jGf (Xi ® X5)°

seT;
_ I dA s$..8 __ d. v
= NdAnGgs Xi X = pXi»
seT; seT;

where the final equality used A < G? and p*(a) = p(a) = p(id) for all s € G, a € A. As the restriction
0;,p to A only involves characters in the orbit of x;, 0; , uniquely determines i.

Now let V be the representation space of ¢; , and W the representation space of X; ® p. Then we
can write V' = @, sW with sW = W and 0, ,(9) >_.cr, sWs = Do, 5q(Xi @ p)(hg,s)Ws where
sg € T;, hys € G; satisfy gs = sghgs. When g € G; and s = id, we have s, = id,hy = g, thus if
veV ={Y cpsws: wy=0for s#id}, then 0; ,(a)v = x;(a)v for all a € A and 0; ,(h)v = p(h)v
for all h € H;. In particular, (Resgi 0; 5, V') is equivalent to p, hence 6; , determines p as well.

0;,p = Indg, (X; ® p) has degree %d;@g = %dp, so for each fixed i € I,

2 2 272 2
2 |G| > |G| A" |H] |H|
Z dGi,p: a2 Z d, = G-QlHi‘:W|Hi|: 2R
pElrr(Gi) | l| pElrr(Gy) 1| | | | 2| i

Now the orbit-stabilizer theorem tells us that Illi ‘I = 10(xs)|, so

2
S X, = Xl = HIE 1006 = 1#]]A] =114 = 6. .
¢ i€l

i€l pelrr(H;) iel
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7 THE SYMMETRIC GROUP

In this section, we will explore the representation theory of S,,, which is particularly beautiful and replete
with interesting combinatorics and connections to other areas of mathematics. Of course, we will only be

able to scratch the surface here.

To begin, a partition A of n (denoted A - n) is an ordered collection of positive integers A = (A1,...,Ag)
where Ay > -+- > A\g and A\ +- - -+ = n. The partitions of n index the conjugacy classes of S,, by specifying
cycle type, and they can be represented by Young diagrams, which are left-justified arrays of boxes having

A; in the i*® row.

For instance the partition (3,2,2,1) - 8 has Young diagram

If the boxes are populated by distinct elements of [n], then the resulting object is called a Young tableau of

shape A, or A-tableau for short. The following will serve as our running example:

3[5]1]
o |42
6|8
7
Define a partial order on partitions by (A1,...,Ag) &> (p1, ... o) f A+ + X >+ +p; forali > 1

(with A\; = 0 when i > k, say). Thus, (4,2) > (3,3),(4,1,1), but (3,3) and (4,1, 1) are not comparable.

Lemma 7.1. Suppose that A\, u = n, let t be a A-tableau, and let s be a p-tableau. If for each i, the numbers
in the i row of s belong to different columns of t, then \ > .

Proof. We can construct a A-tableau u that has the same entries as t in each column and contains the entries
from the first ¢ rows of s in its first 4 rows. This implies the claim since it guarantees that the number of
entries in the first ¢ rows of u is at least the number of entries in the first ¢ rows of s.

To get u from ¢, start by moving each entry in the first row of s to the top of the column that contains it in
t. Then move each entry from the second row of s to the topmost position in its column of ¢ that has not
yet been used. Continuing thusly we arrive at u, and each step is legitimate since the entries of any row of

s belong to different columns of ¢. |

Now the symmetric group acts on A-tableaux by permuting their entries. Thus if 7 = (17)(245)(368), then

7

’»—uoocncn

Given a Young tableau ¢, define its column stabilizer C; to be the group of all permutations 7 such that ¢
and 7t have the same elements in each column. For example, Cyy = S(34,6,715(2,5,8)S{1} = Sa x S3, where

Sx denotes the subgroup of S,, that fixes all elements in [n] \ X.
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Define an equivalence relation on the set of A-tableaux by declaring that t; ~ ¢ if they have the same entries

in each row, e.g.

3[5]1 135
42 2
68 EERE
7 7

(The tableau on the right is called standard since its entries increase along each row and column.)

Equivalence classes of tableaux are called tabloids. The tabloid associated with tableau ¢ is denoted {¢} and
the set of A-tabloids is denoted T*. If A = (A1,... Ag), then |T*| = n!/A;!- - Agl.

Also, if t; ~ to, then ot ~ oty for all ¢ € S, because if a is in row i of ot;, then o~ !(a) is in row i of t;, so
o~ Y(a) is in row i of t3, so a is in row i of ote, and conversely. In particular, 7{t} = {nt} defines an action
of S, on T™.

For a fixed partition \, define the permutation module M* to be the complex vector space with basis vectors
{e{t} : {t} e TA}, and consider the representation (py, M*) defined by pa(m)eqs) = efry-

We will construct a unique irreducible subrepresentation of each M?*. As the number of partitions equals
the number of conjugacy classes, this will account for all of them.

Example 7.1. For the trivial partition (n), there is a single tabloid, so p,) is the trivial representation.

At the other extreme, each tabloid {¢} of shape (1™) := (1,...,1) contains only the tableau ¢, which we can
represent as the permutation o with o (i) the element in row 4 of ¢. p(;») is thus the regular representation
pary(T)es = €ry.

The tabloids of shape (n—1, 1) are determined by the content of the single box in the second row, so MO—11)
has basis ey, ..., e, with p,,_1,1)(7)ex = ex(x). This is the n-dimensional permutation representation, which

splits as the direct sum of the trivial representation and the standard representation.

Given partitions A, - n and a A-tableau ¢, define the operator A; : M* — M*" by Ay = . sgn(m)pu ().

When p = A, we call f; ;= Ajeqy =3 sgn(m)er) the polytabloid associated with .

el

Proposition 7.1. py(o)f; = £, for all tableaux t of shape \ and all o0 € S,,.

Proof. For o € S,,, S C Sy, s C [n], write 0S = {mr = S}, So = {Tra = S}, and o5 = {a(i) 1 c s}
If ¢; is the set of entries in the j* column of ¢, then ¢ = o¢; is the set of entries in the 5™ column of ot
and we have

T € Coy <= wcly = ¢ Vj <= (m0)c; = oc; Vj

lno)e; = c; Vi <= o tro € Cy

< (0~
— 1 eoCiot.

As sgn(-) is invariant under conjugation and Cy; = 0Cyo~!, a change of variables gives

fat = Z Sgn(ﬂ)e{ﬂ'at} = Z Sgn(ailﬂ—a)e{‘not}

TECst n€oCio—1
= sgn(eony = Y sgn(n)pa(o)eqy = pa(o)f. O
neCt neC
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Thus if we define the Specht module S* to be the span of the polytabloids for tableaux of shape A, then S*
is a stable subspace of M*. (S, acts transitively on the set of A\-tableaux, so for any A-tableau t, we can

write S* = span{f,; : 0 € S, }.) Our goal is to show that the S* are irreducible and inequivalent.

Example 7.2. We saw in Example 7.1 that each tabloid ¢ of shape (1") corresponds to some o € S,,.

Clearly its column stabilizer is C; = S,,, so the associated polytabloid is f; = > sgn(m)e roy. Since

TESy
sgn : S, — {£1} is a homomorphism,

p(l")(a)ft = lat = Z sgn(ﬂ-)e{wao’}
TESy

= sgn(a_l) Z sgn(ma)e o) = sgn(a)fy,
TESy

hence S(") is the sign representation.

Lemma 7.2. Let A\, = n. Suppose t is a A\-tableau and s is a p-tableau with Aersy # 0.
Then A > u, and if X\ = p, then Ajeps = £f;.

Proof. Suppose there exist a,b € [n] such that a and b are in the same row of s and the same column of ¢.
Then p,,((ab))e(s} = e(s) and ((ab)) < C;. Choosing a transversal o1, ..., 0, gives

T

Aegsy = Z sgn(m)pu(m)eqsy = Z [sgn(ow)pu(on)eqsy + sgn(ok(ab))pu(or(ab))eqs]

neCy k=1
= ngn(ok)p#(ok) [e{s} - Pu((ab))e{s}} =0.
k=1

But this contradicts our assumption, so it must be the case that any elements belonging to the same row of
s are in different columns of ¢, hence A > p by Lemma 7.1.

If A = p, then the fact that the elements in each row of s are in different columns of ¢ implies that s = 7t
for some 7 € C;. (Since the first rows of s and ¢ have the same number of elements and those in the first
row of s are in different columns of ¢, there is a permutation m; € C; so that the sets of elements in the first
rows of s and m;t agree. Likewise, there is a permutation mo € C} that fixes the first row of 71t and ensures

that the second rows of s and wamit contain the same elements...) It follows that

Aversy = Z sgn(m)e sy = Z sgn(m)e 5y

el el
= Z sgn(o)sgn(7 ey, = sgn(m)f:. O
oeCy

Lemma 7.3. Let v € M and let t be a A-tableau. Then Av = cf; for some scalar ¢ € C.

Proof. Lemma 7.2 gives Aseryy = c(qfi where cryy € {—1,0,1}. Since v = Z{S}ep agsreqsy for some

scalars {ags)} € C, we have

Av =) sgu(mpa(m) D aggers

weCy {s}eT>
= Z s} Z sgn(w)pA(ﬂ)e{s} = ( Z Q{S}C{s}>ft. ]
{s}eT> meCy {s}erT>
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Now put an inner product (-,-) on M* that makes {e{s}}{s}eTA an orthonormal set and for which p) is

unitary. Then for any A-tableau t and any u,v € M?*, we have

(A v) = 3 sgn(m) {pa(rjuv) = 3 sear ) (uwpa(r)v)

TeCy TeCy
= Z sgn(m) (u, pr(m)v) = (u, Ayv),
el

thus A; self-adjoint with respect to (-, -).

Theorem 7.1 (Submodule Theorem). Let V' be a stable subspace ofM)‘. Then either S* CV orV C (S’\)J'.

Proof. Suppose there is a A-tableau t and a vector v € V such that A;v # 0. Lemma 7.3 and the invariance
of V imply that there is a nonzero ¢ € C with cf; = A;v € V. Tt follows that f,; = pr(0)f; € V for all o € S,
and thus S* = span{fgt 10 € Sn} cV.

The only other possibility is that for every A-tableau ¢ and vector v € V, A4,v = 0, so (f;,v) = (Aeqyy,v) =
(e, Ayv) =0 and thus V C (S’\)L. O

Corollary 7.1. For each A\ n, (px,S*) is irreducible.

Proof. Suppose that V is a proper stable subspace of S*. Then Theorem 7.1 implies V' C (SA)L, and the
assertion follows since S* N (S)‘)l = {0}. O

It remains only to understand how the Specht modules corresponding to different partitions relate to one

another. Specifically, to account for all irreps, we must show that S* and S* are not equivalent when X\ # .

Lemma 7.4. Let A\, - n and suppose that T is a linear map from M to M* that commutes with the
action of S,,. If SN € ker(T), then X\ > u. Moreover, if X\ = p, then T|g» is a scalar multiple of the identity.

Proof. Suppose S* Z ker(T). Since T is an intertwining map, ker(7T) is a stable subspace of M*, so Theorem
7.1 implies ker(T") C (SA)L. Thus for any A\-tableau ¢, 0 # Tf; = T A;eq;y = A;Teyy, where the final equality
used TAy = ) o, sen(m)Tpx(T) = D ec, sn(m)pu(m)T = AT

Since Teqy = 3 enm Q{sye(s} for some scalars {a{s}}{s}eM”, it must be the case that Asefsy # 0 for
some {s} € M*, hence A\ > y by Lemma 7.2.

If A = p, then Lemma 7.3 ensures the existence of some ¢ € C such that Tf; = A;Tey) = cf; € S*, hence T
maps S? to itself. As S* is irreducible, Schur’s lemma implies that T'|g» = cI. O

Lemma 7.5. Let T : S* — S be a linear map that commutes with the action of S,. If T # 0, then X\ > p.

Proof. Any such T can be extended to a linear map T’ from M* to M* by declaring T'v = 0 for all
v E (S/\)L, and the invariance of S* and (S’\)l implies that for each u € S, v € (S’\)L, o€ Sy,

T'pa(o)(u+v) =T'pr(0)u+ T pr(0)v = Tpx(o)u
= pu(o)Tu=p,(o)T" (u+v).
Thus if T' # 0, then Lemma 7.4 tells us that A > p. O
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Theorem 7.2. Specht modules corresponding to distinct partitions are inequivalent.

Proof. If py and p, are equivalent, then there is a nonzero linear map 7T : SA — SH with T o py = puoT,
so Lemma 7.5 implies A > p. A symmetric argument shows that g > A, proving the contrapositive of the

assertion. O

In fact, Lemma 7.4 tells us a bit more about the direct sum decomposition of the permutation modules:

Corollary 7.2. (p,,S") has multiplicity one in (p,, M"), and any other irreducible constituent (px,S™)
must satisfy \ > u.

Finally, we observe that while the Specht module S* is spanned by the A-polytabloids, they are not linearly
independent in general; see Example 7.2. However, one can show that the set of polytabloids corresponding
to standard tableaux of shape A actually forms a basis for S*. The degree of py is thus the number of

standard A-tableau, which can be computed using the famous hook length formula.

Clearly there’s plenty more representation theory to study, even apart from considering infinite groups or
fields other than C!
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APPENDIX

Lemma 7.6 (Bézout’s lemma). The greatest common divisor of positive integers by, ..., by is the smallest

positive integer which can be expressed as an integral linear combination of by, ..., b.

Proof. Let d = a1by +. ..+ agbg be the smallest positive integer which can be so expressed. (Such a number
exists by the well-ordering of N.) If any b; is divided by d, then its remainder 0 < r; < d is of the form
rj = o, b1 +. ..+ )by since it is obtained by subtracting a multiple of d from b;. As d is the smallest positive
integer of this form, it must be the case that r; = 0, hence d is a divisor of each b;. If c is any other common

divisor of by, ..., bk, then ¢ divides d as well, hence d is the greatest common divisor. O

Theorem 7.3 (Second Isomorphism Theorem). If H << G and K < G, then HK <G, HNK < K, and
K/(HNK)>~ HK/H.

Proof. We have already seen that HK < G, and since H C HK with H < G, we have that H < HK.

Now suppose vH € HK/H. Then x = hk = kk~'hk = kh' for some h,h/ € H, k € K, so xH = kH. Tt
follows that the map ¢ : K — HK/H defined by ¢(k) = kH is a surjective homomorphism. Its kernel is
clearly HN K, so Theorem 1.1 shows that HNK < K and K/(HNK) = K/ker(p) 2 Im(p) = HK/H. O

Theorem 7.4 (Third Isomorphism Theorem). If H, K < G and K < H, then H/K < G/K and
(G/K)/(H/K) = G/H.

Proof. Let ¢ : G/K — G/H be given by ¢(gK) = gH. ¢ is well-defined because if aK = bK, then
a~'b € K < H, so aH = bH, and one readily checks that it is a surjective homomorphism. Since gH = H
iff ge H, ker(¢) ={9K € G/K : gH =H} = H/K, so Theorem 1.1 gives (G/K)/(H/K) = G/H. O

Theorem 7.5 (Correspondence Theorem). Suppose that N < G and define S(G;N)={H < G: N < H},
S(G/N)={K: K <G/N}. Then the map ¢ : S(G; N) — S(G/N) defined by ¢(S) = S/N is a bijection.
Also, for any S,T € S(G;N), T < S if and only if p(T) < ¢(S), in which case [S : T| = [¢(S) : ¥ (T)].
Moreover, T < S if and only if Y(T) < ¥(S), in which case S/T = (S)/Y(T).

Proof. If N < H < G, then H/N is a subgroup of G/N since it is a subset which is itself a group. To see
that v is injective observe that if S,T € S(G; N) with S/N = T/N, then for any s € S, thereisat € T
with sV = tN so that s = tn for some n € N < T, hence s € T. The reverse inclusion is proved similarly.
To see that 1 is surjective, suppose that A’ < G/N and define A = {z € G: N € A’'}. If 2,y € A, then
xN,yN € A’, hence 2y !N = Ny !N = (zN)(yN)~! € A’. This shows that A is a subgroup of G, and it
contains N since nN = N € A’ for all n € N. Surjectivity follows since A" = ¢)(A) by construction.

Since bijections preserve set inclusion, it’s clear that 7' < S iff ¢(T) < ¥(S), and one can check that
the map sT +— (sN)y(T) is bijection from cosets of T' in S to those of T/N in S/N. (For finite groups,
[S:T)=[4(S):(T)] is an arithmetic consequence of [G : H| = |G|/ |H].)

If T < S, then the third isomorphism theorem gives T/N < S/N and (S/N)/(T/N) = S/T. Finally, if
T/N <« S/N,t € T, and s € S, then (sts™*)N = (sN)(tN)(sN)~! € T/N, hence sts~! = t'n’ for some
t' €T, n €nN < T, showing that sts~! € T. O
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Lemma 7.7. If G is a p-group acting on a finite set X and Fixg(X) = {z € X : gx = x for all g € G} is
the set of fized points, then | X| = |Fixg(X)| (mod p).

Proof. Write X = | |;_; O(x;) with {z1,..., 2} = Fixg(X) so that | X| = [Fixq(X)|+>_;_, 1 |O(z;)|. Since
0(x:)| = |G| /|G,

is divisible by p for ¢ > s, the result follows. ]

Theorem 7.6 (Sylow II). If P and Q are p-Sylow subgroups of G, then Q = gPg~! for some g € G.

Proof. Let @ act on the family of cosets G/P by left multiplication and write Fixg(G/P) for the set of
fixed points. Lemma 7.7 gives |G/P| = |Fixq(G/P)| (mod p). Since |G/P| = |G|/ |P] is not divisible by p,
|[Fixq(G/P)| # 0, so there is some gP € Fixg(G/P). This means that ¢(gP) = gP, hence gg € gP, for all
q€Q,s0Q C gPg~'. As conjugation by g is an automorphism of G, |ng’1| = |P| = |Q| and we conclude
that Q = gPg~!. O

Theorem 7.7 (Sylow III). Suppose that |G| = p*m with p { m and write n, for the number of p-Sylow
subgroups of G. Then n, | m and n, = 1(modp). If P is any p-Sylow subgroup of G and Ng(P) is its
normalizer in G, then n, = [G : Ng(P)].

Proof. Write Syl,(G) for the set of p-Sylow subgroups of G, and let P act on Syl,(G) by conjugation.

(h — ghg~! is an automorphism of G' and thus maps subgroups to subgroups of the same size.) We will
show that Fixp(Syl,(G)) = {P}, so that n, = 1 (mod p) by Lemma 7.7.

To this end, note that Fixp(Syl,(G)) = {Q € Syl,(G) : gQg~' = Q for all g € P}, so we certainly have
that P € Fixp(Syl,(G)). If Q € Fixp(Syl,(G)), then P < Ng(Q). Since Q < Ng(Q) as well, we see that
P and @ are p-Sylow subgroups of N (Q) and thus are conjugate. But @ <t Ng (@), so it must be the case
that () = P, and the assertion follows.

For the remaining claims, let G act on Syl,(G) by conjugation. Theorem 7.6 implies that Syl,(G) = O(P)
and the corresponding stabilizer is Ng(P), hence n, = |O(P)| = [G : Ng(P)]. As this must divide |G| = p*m

and we know that n, = 1 (modp), we conclude that n,, | m. O

Fact 7.1. Given M € C4*?, define Tr(M) = 22:1 My .

(1) If A€ C™*™ and B € C"*™, then Tr(AB) = Tr(BA).

(2) If T : V — V is a linear transformation, B is the matriz for T with respect to a basis B, and C is the
matriz for T with respect to a basis C, then Tr(B) = Tr(C).

(3) If A € C**™ has eigenvalues (counting multiplicity) M1, ..., \n, then Tr(A) =377 Ag.

Proof.
(1)

= Z Bk Are = Z(BA)“ = Tr(BA).

(=1 k=1 (=1



(2) Let P be the change-of-basis matrix from B-coordinates to C-coordinates. Then C' = PBP~!, so
Tr(C) = Tr(PBP™') = Tr((PB)P™)
=Tr(P~"(PB))=Tr((P~'P)B) = Tr(B).

(3) Let A be given in Jordan normal form as A = PJP~!. Then J is upper-triangular with the eigenvalues

of A on its main diagonal, so

Tr(A) = Te(PJP™') = Tr(J) = zn: Tk = znj M-
k=1 k=1

Alternatively, the coefficient of A"»~1 in ¢()\) = det(A\ — A) is —Tr(A), and the coefficient of A"~! in
p(A) =TTt (A = Ae) s = 325y Ak

Fact 7.2 (Rational Roots Test). Let p(z) = anz"™ + -+ + a1z + ag with ag,...,a, € Z. If r;s € Z satisfy
(r,s) =1 and p(r/s) =0, thenr | ap and s | an.

Proof. Multiplying a,,(r/s)" +---+a1(r/s) +ag = 0 by s gives ap,r™ +a,_17" " 1s- - +a;rs"t +aps™ = 0.
It follows that —ags™ = r(a,7" "t + -+ + a8 1), hence r | ag, and —a,r"™ = s(ap_17™" "1 + -+ + ags" 1),
O

hence s | ay,.

Lemma 7.8. y € C is an algebraic integer if and only if there exist wy,...,w, € C, not all zero, such that

wiy = Z;;l bijw; for some integers {b,»j}}szl.

Proof. If y is an algebraic integer, then there exist ag, ..., a,_1 € Z with y" 4+ an_1y" ' +---+a1y+ag = 0.

Taking w; = y*~! for i € [n] gives w;y = y* = w;11 for 1 <i <n and w,y = y" = —agw1 — *** — Ap_1Wp.

w1

?

Conversely, suppose w;y = Z;l:l b;jw; and let B be the n xn matrix with (7, j)-entry b;;. Setting w = l
wTL

we have Bw = yw, so y is an eigenvalue of the integer matrix B and thus a root of the monic polynomial
p(z) = det(zI — B). O

Proposition 7.2. The algebraic integers form a subring of C.

Proof. 1 € A since it solves z—1 = 0. Suppose y, z € A. By Lemma 7.8, there are w1, ..., W, T1,...,T, € C,
{00 37— 15 {ene} i =1 C Z satisfying wiy = 3770, bjjw; and w2 = Y05 crexe.
It follows that w;(—y) = E;n:l(—bij)U)j, hence —y € A; (wizp)(y + 2) = Zy;l bijwiT + > gy CheW;Te,

hence y + z € A; and (w;wg)(y2) = (wiy)(vx2) = (Z}nzl bijwj) (Z?zl CWC@) = 271 2 (bijere) (wyzy),
hence yz € A. O
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Proposition 7.3. The maps Res% : C(G) — C(H) and Ind§, : C(H) — C(G) are linear.
Proof. If ® € C(G) and z,y € H, then xyz~—' € H, hence

Res$®(zyz ™) = ®(zyz™t) = ®(y) = Res§d(y).
If ¥ € C(G) and «, 8 € C as well, then

Resg [c@ + ﬁ\Il] () = a®(z) + pY¥(x) = aResgq)(x) + 5Resg\11(x).
If € C(H) and z,y € G, then

ey = o 3 ey a) = o 3 ) = mdol),
zeG zeG

where we made use of the reindexing w = z7!z.

If » € C(H) and «a, 8 € C as well, then

nd [a¢ + By] () |H| > a+ Bz ‘H| > [ad(z az) + Bz az)]
zEG zeG
|H| Z o(z |H| Z V(2 tez) = oIndGo(z) + AIndG o (x).

zeG zeG
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